Mon compte

connexion

inscription

   Publicité E▼


 » 
allemand anglais arabe bulgare chinois coréen croate danois espagnol espéranto estonien finnois français grec hébreu hindi hongrois islandais indonésien italien japonais letton lituanien malgache néerlandais norvégien persan polonais portugais roumain russe serbe slovaque slovène suédois tchèque thai turc vietnamien
allemand anglais arabe bulgare chinois coréen croate danois espagnol espéranto estonien finnois français grec hébreu hindi hongrois islandais indonésien italien japonais letton lituanien malgache néerlandais norvégien persan polonais portugais roumain russe serbe slovaque slovène suédois tchèque thai turc vietnamien

Significations et usages de Californium

Définition

californium (n.)

1.a radioactive transuranic element; discovered by bombarding curium with alpha particles

Californium (n.)

1.(MeSH)Californium. A man-made radioactive actinide with atomic symbol Cf, atomic number 98, and atomic weight 251. Its valence can be +2 or +3. Californium has medical use as a radiation source for radiotherapy.

   Publicité ▼

Définition (complément)

⇨ voir la définition de Wikipedia

Synonymes

californium (n.)

atomic number 98, Cf

   Publicité ▼

Locutions

Dictionnaire analogique

Wikipedia

Californium

                   
berkeliumcaliforniumeinsteinium
Dy

Cf

(Uqo)
Appearance
silvery
A very small disc of silvery metal, magnified to show its metallic texture
General properties
Name, symbol, number californium, Cf, 98
Pronunciation /ˌkælɨˈfɔrniəm/
KAL-i-FOR-nee-əm
Element category actinide
Group, period, block n/a7, f
Standard atomic weight (251) [1]
Electron configuration [Rn] 5f10 7s2 [2]
Electrons per shell 2, 8, 18, 32, 28, 8, 2 (Image)
Physical properties
Phase solid
Density (near r.t.) 15.1[1] g·cm−3
Melting point 1173 K, 900 [1] °C, 1652 °F
Atomic properties
Oxidation states 2, 3, 4 [3]
Electronegativity 1.3 [4] (Pauling scale)
Ionization energies 1st: 608 [5] kJ·mol−1
Miscellanea
Mohs hardness 3–4[6]
CAS registry number 7440-71-3 [1]
Most stable isotopes
Main article: Isotopes of californium
iso NA half-life DM DE (MeV) DP
248Cf syn 333.5 d α (100%) 6.369 244Cm
SF (2.9×10−3%) 0.0029
249Cf syn 351 y α (100%) 6.295 245Cm
SF (5.0×10−7%) 4.4×10−7
250Cf syn 13.08 y α (99.92%) 6.129 246Cm
SF (0.08%) 0.077
251Cf syn 898 y α 6.172 247Cm
252Cf syn 2.645 y α (96.91%) 6.217 248Cm
SF (3.09%)
253Cf syn 17.81 d β (99.69%) 0.29 253Es
α (0.31%) 6.126 249Cm
254Cf syn 60.5 d SF (99.69%)
α (0.31%) 5.930 250Cm
Isotope references: [7][8]
· r

Californium is a radioactive metallic chemical element with the symbol Cf and atomic number 98. The element was first made at the University of California, Berkeley in 1950 by bombarding curium with alpha particles (helium-4 ions). It is an actinide element, the sixth transuranium element to be synthesized, and has the second-highest atomic mass of all the elements that have been produced in amounts large enough to see with the unaided eye (after einsteinium). The element was named after California and the University of California. It is the heaviest element to occur naturally on Earth; heavier elements can only be produced by synthesis.

Two crystalline forms exist for californium under normal pressure: one above 900 °C and one below 900 °C. A third form exists at high pressure. Californium slowly tarnishes in air at room temperature. Compounds of californium are dominated by a chemical form of the element, designated californium(III), that can participate in three chemical bonds. The most stable of californium's twenty known isotopes is californium-251, which has a half-life of 898 years. This short half-life means the element is not found in significant quantities in the Earth's crust.[a] Californium-252, with a half-life of about 2.64 years, is the most common isotope used and is produced at the Oak Ridge National Laboratory in the United States and the Research Institute of Atomic Reactors in Russia.

Californium is one of the few transuranium elements that have practical applications. Most of these applications exploit the property of certain isotopes of californium to emit neutrons. For example, californium can be used to help start up nuclear reactors, and it is employed as a source of neutrons when studying materials with neutron diffraction and neutron spectroscopy. Californium can also be used in nuclear synthesis of higher mass elements; ununoctium (element 118) was synthesized by bombarding californium-249 atoms with calcium-48 ions. Use of californium must take into account radiological concerns and the element's ability to disrupt the formation of red blood cells by bioaccumulating in skeletal tissue.

Contents

  Characteristics

  Physical properties

Californium is a silvery white actinide metal[9] with a melting point of 900 ± 30 °C and an estimated boiling point of 1745 °C.[10] The pure metal is malleable and is easily cut with a razor blade. Californium metal starts to vaporize above 300 °C when exposed to a vacuum.[11] Below 51 K (−220 °C) californium metal is either ferromagnetic or ferrimagnetic (it acts like a magnet), between 48 and 66 K it is antiferromagnetic (an intermediate state), and above 160 K (−110 °C) it is paramagnetic (external magnetic fields can make it magnetic).[12] It forms alloys with lanthanide metals but little is known about them.[11]

The element has two crystalline forms under 1 standard atmosphere of pressure: A double-hexagonal close-packed form dubbed alpha (α) and a face-centered cubic form designated beta (β).[b] The α form exists below 900 °C with a density of 15.10 g/cm3 and the β form exists above 900 °C with a density of 8.74 g/cm3.[14] At 48 GPa of pressure the β form changes into an orthorhombic crystal system due to de-localization of the atom's 5f electrons, which frees them to bond.[15][c]

The bulk modulus of a material is a measure of its resistance to uniform pressure. Californium's bulk modulus is 50 ± 5 GPa, which is similar to trivalent lanthanide metals but smaller than more familiar metals, such as aluminium (70 GPa).[15]

  Chemical properties and compounds

Representative Californium compounds[9][d]
state compound formula color
+2 californium(II) bromide CfBr2 yellow
+2 californium(II) iodide CfI2 dark violet
+3 californium(III) oxide Cf2O3 yellow-green
+3 californium(III) fluoride CfF3 bright green
+3 californium(III) chloride CfCl3 emerald green
+3 californium(III) iodide CfI3 lemon yellow
+4 californium(IV) oxide CfO2 black brown
+4 californium(IV) fluoride CfF4 green

Californium exhibits valences of 4, 3, or 2; indicating the number of chemical bonds one atom of this element can form.[14] Its chemical properties are predicted to be similar to other primarily 3+ valence actinide elements[17] and the element dysprosium, which is the lanthanide above californium in the periodic table.[18] The element slowly tarnishes in air at room temperature, with the rate increasing when moisture is added.[14] Californium reacts when heated with hydrogen, nitrogen, or a chalcogen (oxygen family element); reactions with dry hydrogen and aqueous mineral acids are rapid.[14]

Californium is only water soluble as the californium(III) cation. Attempts to reduce or oxidize the +3 ion in solution have failed.[18] The element forms a water-soluble chloride, nitrate, perchlorate, and sulfate and is precipitated as a fluoride, oxalate, or hydroxide.[17]

  Isotopes

Twenty radioisotopes of californium have been characterized, the most stable being californium-251 with a half-life of 898 years, californium-249 with a half-life of 351 years, californium-250 with a half-life of 13.08 years, and californium-252 with a half-life of 2.645 years.[8] All the remaining isotopes have half-lives shorter than a year, and the majority of these have half-lives shorter than 20 minutes.[8] The isotopes of californium range in mass number from 237 to 256.[8]

Californium-249 is formed from the beta decay of berkelium-249, and most other californium isotopes are made by subjecting berkelium to intense neutron radiation in a nuclear reactor.[18] Although californium-251 has the longest half-life, its production yield is only 10% due to its tendency to collect neutrons (high neutron capture) and its tendency to interact with other particles (high neutron cross-section).[19]

Californium-252 is a very strong neutron emitter, which makes it extremely radioactive and harmful.[20][21][22] Californium-252 undergoes alpha decay (the loss of two protons and two neutrons) 96.9% of the time to form curium-248 while the remaining 3.1% of decays are spontaneous fission.[8] One microgram (µg) of californium-252 emits 2.3 million neutrons per second, an average of 3.7 neutrons per spontaneous fission.[23] Most of the other isotopes of californium decay to isotopes of curium (atomic number 96) via alpha decay.[8]

  History

Large pieces of equipment with a man standing nearby.
  The 60-inch-diameter (1,500 mm) cyclotron used to first synthesize californium

Californium was first synthesized at the University of California, Berkeley by the physics researchers Stanley G. Thompson, Kenneth Street, Jr., Albert Ghiorso, and Glenn T. Seaborg on or about February 9, 1950.[24] It was the sixth transuranium element to be discovered; the team announced its discovery on March 17, 1950.[25][26][27]

To produce californium, a microgram-sized target of curium-242 (242
96
Cm
) was bombarded with 35 MeV-alpha particles (4
2
He
) in the 60-inch-diameter (1,500 mm) cyclotron at Berkeley, California, which produced californium-245 (245
98
Cf
) plus one free neutron (n).[24]

242
96
Cm
+ 4
2
He
245
98
Cf
+ 1
0
n

Only about 5,000 atoms of californium were produced in this experiment,[28] and these atoms had a half-life of 44 minutes.[24]

The discoverers named the new element after California and the University of California. This was a break from the convention used for elements 95 to 97, which drew inspiration from how the elements directly above them in the periodic table were named.[29][e] However, the element directly above element 98 in the periodic table, dysprosium, has a name that simply means "hard to get at" so the researchers decided to set aside the informal naming convention.[31] They added that "the best we can do is to point out [that] ... searchers a century ago found it difficult to get to California."[30]

Weighable quantities of californium were first produced by the irradiation of plutonium targets at the Materials Testing Reactor at the Idaho National Laboratory; and these findings were reported in 1954.[32] The high spontaneous fission rate of californium-252 was observed in these samples. The first experiment with californium in concentrated form occurred in 1958.[24] The isotopes californium-249 to californium-252 were isolated that same year from a sample of plutonium-239 that had been irradiated with neutrons in a nuclear reactor for five years.[9] Two years later, in 1960, Burris Cunningham and James Wallman of the Lawrence Radiation Laboratory of the University of California created the first californium compounds—californium trichloride, californium oxychloride, and californium oxide—by treating californium with steam and hydrochloric acid.[33]

The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, started producing small batches of californium in the 1960s.[34] By 1995, the HFIR nominally produced 500 milligrams of californium annually.[35] Plutonium supplied by the United Kingdom to the United States under the 1958 US-UK Mutual Defence Agreement was used for californium production.[36]

The Atomic Energy Commission sold californium-252 to industrial and academic customers in the early 1970s for $10 per microgram[23] and an average of 150 mg of californium-252 were shipped each year from 1970 to 1990.[37][f] Californium metal was first prepared in 1974 by Haire and Baybarz who reduced californium(III) oxide with lanthanum metal to obtain microgram amounts of sub-micrometer thick films.[38][39][g]

  Occurrence

  Nuclear testing has contaminated the environment with traces of californium.

Very minute amounts of californium exist on Earth due to neutron capture reactions and beta decay in very highly-concentrated uranium-bearing deposits.[41][42] Traces of californium can be found near facilities that use the element in mineral prospecting and in medical treatments.[43] The element is fairly insoluble in water, but it adheres well to ordinary soil; and concentrations of it in the soil can be 500 times higher than in the water surrounding the soil particles.[41]

Fallout from atmospheric nuclear testing prior to 1980 contributed a small amount of californium to the environment.[41] Californium isotopes with mass numbers 249, 252, 253, and 254 have been observed in the radioactive dust collected from the air after a nuclear explosion.[44] Californium is not a major radionuclide at United States Department of Energy legacy sites since it was not produced in large quantities.[41]

Californium was once reported to have been found in supernova spectra, but this has been subsequently regarded as an incorrect identification.[45]

  Production

Californium is produced in nuclear reactors and particle accelerators.[46] Californium-250 is made by bombarding berkelium-249 (249
97
Bk
) with neutrons, forming berkelium-250 (250
97
Bk
) via neutron capture (n,γ) which, in turn, quickly beta decays) to californium-250 (250
98
Cf
) in the following reaction:[47]

249
97
Bk
(n,γ)250
97
Bk
250
98
Cf
+ β

Bombardment of californium-250 with neutrons produces californium-251 and californium-252.[47]

Prolonged irradiation of americium, curium, and plutonium with neutrons produces milligram amounts of californium-252 and microgram amounts of californium-249.[48] As of 2006, curium isotopes 244 to 248 are irradiated by neutrons in special reactors to produce primarily californium-252 with lesser amounts of isotopes 249 to 255.[49]

Microgram quantities of californium-252 are available for commercial use through the U.S. Nuclear Regulatory Commission.[46] Only two sites produce californium-252 – the Oak Ridge National Laboratory in the United States, and the Research Institute of Atomic Reactors in Dimitrovgrad, Russia. As of 2003, the two sites produce 0.25 grams and 0.025 grams of californium-252 per year, respectively.[50]

Three californium isotopes with significant half-lives are produced, requiring a total of 15 neutron captures by uranium-238 without nuclear fission or alpha decay occurring during the process.[50] Californium-253 is at the end of a production chain that starts with uranium-238, includes several isotopes of plutonium, americium, curium, berkelium, and the californium isotopes 249 to 253 (see diagram).

A complex flow diagram showing various isotopes.
  Scheme of the production of californium-252 from uranium-238 by neutron irradiation

  Applications

 Large conical structure on a pulley with a man on top and two near the base.
  Fifty-ton shipping cask built at Oak Ridge National Laboratory which can transport up to 1 gram of 252Cf.[51] Large and heavily shielded transport containers are needed to prevent the release of highly radioactive material in case of normal and hypothetical accidents.[52]

Californium-252 has a number of specialized applications as a strong neutron emitter, and each microgram of fresh californium produces 139 million neutrons per minute.[23] This property makes californium useful as a neutron startup source for some nuclear reactors[14] and as a portable (non-reactor based) neutron source for neutron activation analysis to detect trace amounts of elements in samples.[53][h] Neutrons from californium are employed as a treatment of certain cervical and brain cancers where other radiation therapy is ineffective.[14] It has been used in educational applications since 1969 when the Georgia Institute of Technology received a loan of 119 µg of californium-252 from the Savannah River Plant.[55] It is also used with online elemental coal analyzers and bulk material analyzers in the coal and cement industries.

Neutron penetration into materials makes californium useful in detection instruments such as fuel rod scanners;[14] neutron radiography of aircraft and weapons components to detect corrosion, bad welds, cracks and trapped moisture;[56] and in portable metal detectors.[57] Neutron moisture gauges use californium-252 to find water and petroleum layers in oil wells, as a portable neutron source for gold and silver prospecting for on-the-spot analysis,[18] and to detect ground water movement.[58] The major uses of californium-252 in 1982 were, in order of use, reactor start-up (48.3%), fuel rod scanning (25.3%), and activation analysis (19.4%).[59] By 1994 most californium-252 was used in neutron radiography (77.4%), with fuel rod scanning (12.1%) and reactor start-up (6.9%) as important but distant secondary uses.[59]

Californium-251 has a very small critical mass (about 5 kg),[60] high lethality, and a relatively short period of toxic environmental irradiation. The low critical mass of californium led to some exaggerated claims about possible uses for the element.[i]

In October 2006, researchers announced that three atoms of ununoctium (element 118) had been identified at the Joint Institute for Nuclear Research in Dubna, Russia, as the product of bombardment of californium-249 with calcium-48, making it the heaviest element ever synthesized. The target for this experiment contained about 10 mg of californium-249 deposited on a titanium foil of 32 cm2 area.[62][63][64] Californium has also been used to produce other transuranium elements; for example, element 103 (later named lawrencium) was first synthesized in 1961 by bombarding californium with boron nuclei.[65]

  Precautions

Californium that bioaccumulates in skeletal tissue releases radiation that disrupts the body's ability to form red blood cells.[66] The element plays no natural biological role in any organism due to its intense radioactivity and low concentration in the environment.[43]

Californium can enter the body from ingesting contaminated food or drinks or by breathing air with suspended particles of the element. Once in the body, only 0.05% of the californium will reach the bloodstream. About 65% of that californium will be deposited in the skeleton, 25% in the liver, and the rest in other organs, or excreted, mainly in urine. Half of the californium deposited in the skeleton and liver are gone in 50 and 20 years, respectively. Californium in the skeleton adheres to bone surfaces before slowly migrating throughout the bone.[41]

The element is most dangerous if taken into the body. In addition, californium-249 and californium-251 can cause tissue damage externally, through gamma ray emission. Ionizing radiation emitted by californium on bone and in the liver can cause cancer.[41]

  Notes

  1. ^ The Earth formed 4.5 billion years ago, and the extent of natural neutron emission within it that could produce californium from more stable elements is extremely limited.
  2. ^ A double hexagonal close-packed (dhcp) unit cell consists of two hexagonal close-packed structures that share a common hexagonal plane, giving dhcp an ABACABAC sequence.[13]
  3. ^ The three lower-mass transplutonium elements—americium, curium, and berkelium—require much less pressure to delocalize their 5f electrons.[15]
  4. ^ Other +3 oxidation states include the sulfide and metallocene.[16] Compounds in the +4 oxidation state are strong oxidizing agents and those in the +2 state are strong reducing agents.[9]
  5. ^ Europium, in the sixth period directly above element 95, was named for the continent it was discovered on, so element 95 was named americium. Element 96 was named for Marie Curie and Pierre Curie as an analog to the naming of gadolinium, which was named for the scientist and engineer Johan Gadolin. Terbium was named for the city it was discovered in, so element 97 was named berkelium.[30]
  6. ^ The Nuclear Regulatory Commission replaced the Atomic Energy Commission when the Energy Reorganization Act of 1974 was implemented. The price of californium-252 was increased by the NRC several times and was $60 per microgram by 1999; this price does not include the cost of encapsulation and transportation.[23]
  7. ^ In 1975, another paper stated that the californium metal prepared the year before was the hexagonal compound Cf2O2S and face-centered cubic compound CfS.[40] The 1974 work was confirmed in 1976 and work on californium metal continued.[38]
  8. ^ By 1990, californium-252 had replaced plutonium-beryllium neutron sources due to its smaller size and lower heat and gas generation.[54]
  9. ^ An article entitled "Facts and Fallacies of World War III" in the July, 1961, edition of Popular Science magazine read "A californium atomic bomb need be no bigger than a pistol bullet. You could build a hand-held six-shooter to fire bullets that would explode on contact with the force of 10 tons of TNT."[61]

  References

  1. ^ a b c d CRC 2006, p. 4.56.
  2. ^ CRC 2006, p. 1.14.
  3. ^ Greenwood 1997, p. 1265.
  4. ^ Emsley 1998, p. 50.
  5. ^ CRC 2006, p. 10.204.
  6. ^ CRC 1991, p. 254.
  7. ^ CRC 2006, p. 11.196.
  8. ^ a b c d e f NNDC contributors (2008). "Chart of Nuclides". In Sonzogni, Alejandro A. (Database Manager). National Nuclear Data Center, Brookhaven National Laboratory. http://www.nndc.bnl.gov/chart/. Retrieved 2010-03-01. 
  9. ^ a b c d Jakubke 1994, p. 166.
  10. ^ Haire 2006, pp. 1522–1523.
  11. ^ a b Haire 2006, p. 1526.
  12. ^ Haire 2006, p. 1525.
  13. ^ Szwacki 2010, p. 80.
  14. ^ a b c d e f g O'Neil 2006, p. 276.
  15. ^ a b c Haire 2006, p. 1522.
  16. ^ Cotton 1999, p. 1163.
  17. ^ a b Seaborg 2004.
  18. ^ a b c d CRC 2006, p. 4.8.
  19. ^ Haire 2006, p. 1504.
  20. ^ Hicks, D. A.; Ise, John; Pyle, Robert V. (1955). "Multiplicity of Neutrons from the Spontaneous Fission of Californium-252". Physical Review 97 (2): 564–565. Bibcode 1955PhRv...97..564H. DOI:10.1103/PhysRev.97.564. 
  21. ^ Hicks, D. A.; Ise, John; Pyle, Robert V. (1955). "Spontaneous-Fission Neutrons of Californium-252 and Curium-244". Physical Review 98 (5): 1521–1523. Bibcode 1955PhRv...98.1521H. DOI:10.1103/PhysRev.98.1521. 
  22. ^ Hjalmar, E.; Slätis, H.; Thompson, S.G. (1955). "Energy Spectrum of Neutrons from Spontaneous Fission of Californium-252". Physical Review 100 (5): 1542–1543. Bibcode 1955PhRv..100.1542H. DOI:10.1103/PhysRev.100.1542. 
  23. ^ a b c d Martin, R. C.; Knauer, J. B.; Balo, P. A. (1999). "Production, Distribution, and Applications of Californium-252 Neutron Sources". Applied Radiation and Isotopes 53 (4–5): 785–92. DOI:10.1016/S0969-8043(00)00214-1. PMID 11003521. http://www.osti.gov/bridge/purl.cover.jsp?purl=/15053-AE6cnN/native/. 
  24. ^ a b c d Cunningham 1968, p. 103.
  25. ^ Thompson, S. G.; Street, Jr. K.; Ghiorso, A.; Seaborg, G. T. (1950). "Element 98". Physical Review 78 (3): 298. Bibcode 1950PhRv...78..298T. DOI:10.1103/PhysRev.78.298.2. http://escholarship.org/uc/item/44g7z6hk. 
  26. ^ Thompson, S. G.; Street, Jr. K.; Ghiorso, A.; Seaborg, G. T. (1950). "The New Element Californium (Atomic Number 98)" (PDF). Physical Review 80 (5): 790. Bibcode 1950PhRv...80..790T. DOI:10.1103/PhysRev.80.790. http://www.osti.gov/accomplishments/documents/fullText/ACC0050.pdf. 
  27. ^ Street, K., Jr.; Thompson, S. G.; Seaborg, G. T. (1950). "Chemical Properties of Californium" (PDF). Journal of the American Chemical Society 72 (10): 4832. DOI:10.1021/ja01166a528. http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA319899&Location=U2&doc=GetTRDoc.pdf. 
  28. ^ Seaborg 1996, p. 82.
  29. ^ Weeks 1968, p. 849.
  30. ^ a b Weeks 1968, p. 848.
  31. ^ Heiserman 1992, p. 347.
  32. ^ Diamond, H. et al. (1954). "Identification of Californium Isotopes 249, 250, 251, and 252 from Pile-Irradiated Plutonium". Physical Review 94 (4): 1083. Bibcode 1954PhRv...94.1083D. DOI:10.1103/PhysRev.94.1083. 
  33. ^ "Element 98 Prepared". Science News Letters 78 (26). December 1960. 
  34. ^ "The High Flux Isotope Reactor". Oak Ridge National Laboratory. Archived from the original on 2010-05-27. http://web.archive.org/web/20100527164346/http://web.ornl.gov/sci/rrd/pages/hfir.html. Retrieved 2010-08-22. 
  35. ^ Osborne-Lee 1995, p. 11.
  36. ^ "Plutonium and Aldermaston – an Historical Account" (PDF). UK Ministry of Defence. 2001-09-04. p. 30. Archived from the original on 2006-12-13. http://web.archive.org/web/20061213032416/http://www.mod.uk/NR/rdonlyres/B31B4EF0-A584-4CC6-9B14-B5E89E6848F8/0/plutoniumandaldermaston.pdf. Retrieved 2007-03-15. 
  37. ^ Osborne-Lee 1995, p. 6.
  38. ^ a b Haire 2006, p. 1519.
  39. ^ Haire, R.G.; Baybarz, R.D. (1974). "Crystal Structure and Melting Point of Californium Metal". Journal of Inorganic and Nuclear Chemistry 36 (6): 1295. DOI:10.1016/0022-1902(74)80067-9. 
  40. ^ Zachariasen, W. (1975). "On Californium Metal". Journal of Inorganic and Nuclear Chemistry 37 (6): 1441–1442. DOI:10.1016/0022-1902(75)80787-1. 
  41. ^ a b c d e f ANL contributors (August 2005). "Human Health Fact Sheet: Californium" (PDF). Argonne National Laboratory. http://www.evs.anl.gov/pub/doc/Californium.pdf. 
  42. ^ Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements (New ed.). New York, NY: Oxford University Press. ISBN 978-0-19-960563-7. 
  43. ^ a b Emsley 2001, p. 90.
  44. ^ Fields, P. R. et al. (1956). "Transplutonium Elements in Thermonuclear Test Debris". Physical Review 102 (1): 180–182. Bibcode 1956PhRv..102..180F. DOI:10.1103/PhysRev.102.180. 
  45. ^ Ruiz-Lapuente1996, p. 274.
  46. ^ a b Krebs 2006, pp. 327–328.
  47. ^ a b Heiserman 1992, p. 348.
  48. ^ Cunningham 1968, p. 105.
  49. ^ Haire 2006, p. 1503.
  50. ^ a b NRC 2008, p. 33.
  51. ^ Seaborg 1994, p. 245.
  52. ^ Shuler, James (2008). "DOE Certified Radioactive Materials Transportation Packagings" (PDF). United States Department of Energy. p. 1. http://rampac.energy.gov/PCN/EM-PCP-certified-pkgs-8808.pdf. 
  53. ^ Martin, R. C. (2000-09-24). "Applications and Availability of Californium-252 Neutron Sources for Waste Characterization" (PDF). Spectrum 2000 International Conference on Nuclear and Hazardous Waste Management. Chattanooga, Tennessee. http://www.ornl.gov/~webworks/cpr/pres/107270_.pdf. Retrieved 2010-05-02. 
  54. ^ Seaborg 1990, p. 318.
  55. ^ Osborne-Lee 1995, p. 33.
  56. ^ Osborne-Lee 1995, pp. 26–27.
  57. ^ "Will You be 'Mine'? Physics Key to Detection". Pacific Northwest National Laboratory. 2000-10-25. Archived from the original on 2007-02-18. http://web.archive.org/web/20070218125029/http://www.pnl.gov/news/2000/00-43.htm. Retrieved 2007-03-21. 
  58. ^ Davis, S. N.; Thompson, Glenn M.; Bentley, Harold W.; Stiles, Gary (2006). "Ground-Water Tracers – A Short Review". Ground Water 18 (1): 14–23. DOI:10.1111/j.1745-6584.1980.tb03366.x. 
  59. ^ a b Osborne-Lee 1995, p. 12.
  60. ^ "Evaluation of nuclear criticality safety data and limits for actinides in transport" (PDF). Institut de Radioprotection et de Sûreté Nucléaire. p. 16. http://ec.europa.eu/energy/nuclear/transport/doc/irsn_sect03_146.pdf. Retrieved 2010-12-20. 
  61. ^ Corporation, Bonnier (July 1961). "Facts and Fallacies of World War III". Popular Science 179 (1): 180. ISSN 0161-7370. http://books.google.com/books?id=OiEDAAAAMBAJ&pg=PA180. 
  62. ^ Oganessian, Yu. Ts. et al. (2006). "Synthesis of the isotopes of elements 118 and 116 in the californium-249 and 245Cm+48Ca fusion reactions". Physical Review C 74 (4): 044602–044611. Bibcode 2006PhRvC..74d4602O. DOI:10.1103/PhysRevC.74.044602. 
  63. ^ Sanderson, K. (2006-10-17). "Heaviest element made – again". Nature News (Nature). DOI:10.1038/news061016-4. 
  64. ^ Schewe, P.; Stein, B. (2006-10-17). "Elements 116 and 118 Are Discovered". Physics News Update. American Institute of Physics. http://www.aip.org/pnu/2006/797.html. Retrieved 2006-10-19. 
  65. ^ "Element 103 Synthesized". Science News-Letter 79 (17): 259. April 1961. 
  66. ^ Cunningham 1968, p. 106.

  Bibliography

  External links

   
               

 

Toutes les traductions de Californium


Contenu de sensagent

  • définitions
  • synonymes
  • antonymes
  • encyclopédie

dictionnaire et traducteur pour sites web

Alexandria

Une fenêtre (pop-into) d'information (contenu principal de Sensagent) est invoquée un double-clic sur n'importe quel mot de votre page web. LA fenêtre fournit des explications et des traductions contextuelles, c'est-à-dire sans obliger votre visiteur à quitter votre page web !

Essayer ici, télécharger le code;

SensagentBox

Avec la boîte de recherches Sensagent, les visiteurs de votre site peuvent également accéder à une information de référence pertinente parmi plus de 5 millions de pages web indexées sur Sensagent.com. Vous pouvez Choisir la taille qui convient le mieux à votre site et adapter la charte graphique.

Solution commerce électronique

Augmenter le contenu de votre site

Ajouter de nouveaux contenus Add à votre site depuis Sensagent par XML.

Parcourir les produits et les annonces

Obtenir des informations en XML pour filtrer le meilleur contenu.

Indexer des images et définir des méta-données

Fixer la signification de chaque méta-donnée (multilingue).


Renseignements suite à un email de description de votre projet.

Jeux de lettres

Les jeux de lettre français sont :
○   Anagrammes
○   jokers, mots-croisés
○   Lettris
○   Boggle.

Lettris

Lettris est un jeu de lettres gravitationnelles proche de Tetris. Chaque lettre qui apparaît descend ; il faut placer les lettres de telle manière que des mots se forment (gauche, droit, haut et bas) et que de la place soit libérée.

boggle

Il s'agit en 3 minutes de trouver le plus grand nombre de mots possibles de trois lettres et plus dans une grille de 16 lettres. Il est aussi possible de jouer avec la grille de 25 cases. Les lettres doivent être adjacentes et les mots les plus longs sont les meilleurs. Participer au concours et enregistrer votre nom dans la liste de meilleurs joueurs ! Jouer

Dictionnaire de la langue française
Principales Références

La plupart des définitions du français sont proposées par SenseGates et comportent un approfondissement avec Littré et plusieurs auteurs techniques spécialisés.
Le dictionnaire des synonymes est surtout dérivé du dictionnaire intégral (TID).
L'encyclopédie française bénéficie de la licence Wikipedia (GNU).

Copyright

Les jeux de lettres anagramme, mot-croisé, joker, Lettris et Boggle sont proposés par Memodata.
Le service web Alexandria est motorisé par Memodata pour faciliter les recherches sur Ebay.
La SensagentBox est offerte par sensAgent.

Traduction

Changer la langue cible pour obtenir des traductions.
Astuce: parcourir les champs sémantiques du dictionnaire analogique en plusieurs langues pour mieux apprendre avec sensagent.

 

4740 visiteurs en ligne

calculé en 0,047s


Je voudrais signaler :
section :
une faute d'orthographe ou de grammaire
un contenu abusif (raciste, pornographique, diffamatoire)
une violation de copyright
une erreur
un manque
autre
merci de préciser :