Mon compte

connexion

inscription

   Publicité R▼


 » 
allemand anglais arabe bulgare chinois coréen croate danois espagnol espéranto estonien finnois français grec hébreu hindi hongrois islandais indonésien italien japonais letton lituanien malgache néerlandais norvégien persan polonais portugais roumain russe serbe slovaque slovène suédois tchèque thai turc vietnamien
allemand anglais arabe bulgare chinois coréen croate danois espagnol espéranto estonien finnois français grec hébreu hindi hongrois islandais indonésien italien japonais letton lituanien malgache néerlandais norvégien persan polonais portugais roumain russe serbe slovaque slovène suédois tchèque thai turc vietnamien

Significations et usages de Immunotherapy

Définition

immunotherapy (n.)

1.therapy designed to produce immunity to a disease or to enhance resistance by the immune system

Immunotherapy (n.)

1.(MeSH)Manipulation of the host's immune system in treatment of disease. It includes both active and passive immunization as well as immunosuppressive therapy to prevent graft rejection.

   Publicité ▼

Définition (complément)

⇨ voir la définition de Wikipedia

Voir aussi

immunotherapy (n.)

immunotherapeutic

   Publicité ▼

Locutions

Dictionnaire analogique

Wikipedia

Immunotherapy

                   
Immunotherapy
Intervention
MeSH D007167
OPS-301 code: 8-03

Immunotherapy is a medical term defined as the "treatment of disease by inducing, enhancing, or suppressing an immune response".[1] Immunotherapies designed to elicit or amplify an immune response are classified as activation immunotherapies. While immunotherapies that reduce or suppress are classified as suppression immunotherapies.

Immunomodulators
Agent Example
Interleukins IL-2, IL-7, IL-12
Cytokines Interferons, G-CSF, Imiquimod
Chemokines
Other cytosine phosphate-guanosine, oligodeoxynucleotides, glucans

The active agents of immunotherapy are collectively called immunomodulators. They are a diverse array of recombinant, synthetic and natural preparations, often cytokines. Some of these substances, such as granulocyte colony-stimulating factor (G-CSF), interferons, imiquimod and cellular membrane fractions from bacteria are already licensed for use in patients. Others including IL-2, IL-7, IL-12, various chemokines, synthetic cytosine phosphate-guanosine (CpG), oligodeoxynucleotides and glucans are currently being investigated extensively in clinical and preclinical studies. Immunomodulatory regimens offer an attractive approach as they often have fewer side effects than existing drugs, including less potential for creating resistance in microbial diseases.[2]

Cell based Immunotherapies are proven to be effective for some cancers. Immune effector cells such as lymphocytes, macrophages, dendritic cells, natural killer cells (NK Cell), cytotoxic T lymphocytes (CTL), etc., work together to defend the body against cancer by targeting abnormal antigens expressed on the surface of the tumor due to mutation.

Contents

  Activation immunotherapies

  Cancer

Cancer immunotherapy attempts to stimulate the immune system to reject and destroy tumors. Dr William Coley used Coley's Toxins in the late 1800s as crude immunotherapy with some success.[3] Immuno cell therapy for cancer was first introduced by Rosenberg and his colleagues of National Institute of Health USA. In the late 80s, they published an article in which they reported a low tumor regression rate (2.6–3.3%) in 1205 patients with metastatic cancer who underwent different types of active specific immunotherapy (ASI), and suggested that immuno cell therapy along with specific chemotherapy is the future of cancer immunotherapy.[4] Initially Immunotherapy treatments involved administration of cytokines such as Interleukin.[5] Thereafter the adverse effects of such intravenously administered cytokines[6] lead to the extraction of the lymphocytes from the blood and expanding in vitro against tumour antigen before injecting the cells[7] with appropriate stimulatory cytokines. The cells will then specifically target and destroy the tumor expressing antigen against which they have been raised.

The concept of this treatment started in the US in 80s and fully fledged clinical treatments on a routine basis have been in practice in Japan since 1990. Randomized controlled studies in different cancers resulting in significant increase in survival and disease free period have been reported[8][9][10][11] and its efficacy is enhanced by 20–30% when cell based immunotherapy is combined with other conventional treatment methods.

BCG immunotherapy[12] for early stage (non-invasive) bladder cancer utilizes instillation of attenuated live bacteria into the bladder, and is effective in preventing recurrence in up to two thirds of cases. Topical immunotherapy utilizes an immune enhancement cream (imiquimod) which is an interferon producer causing the patients own killer T cells to destroy warts,[13] actinic keratoses, basal cell cancer, vaginal intraepithelial neoplasia,[14] squamous cell cancer,[12][15] cutaneous lymphoma,[16] and superficial malignant melanoma,.[17] Injection immunotherapy uses mumps, candida the HPV vaccine[18][19] or trichophytin antigen injections to treat warts (HPV induced tumors). Lung cancer has been demonstrated to potentially respond to immunotherapy[20]

  Dendritic cell based immunotherapy

Dendritic cells can be stimulated to activate a cytotoxic response towards an antigen. Dendritic cells, a type of antigen presenting cell, are harvested from a patient. These cells are then either pulsed with an antigen or transfected with a viral vector. Upon transfusion back into the patient these activated cells present tumour antigen to effector lymphocytes (CD4+ T cells, CD8+ T cells, and B cells). This initiates a cytotoxic response to occur against cells expressing tumour antigens (against which the adaptive response has now been primed).[21] The Dendreon cancer vaccine Provenge is one example of this approach.

  T-cell adoptive transfer

Adoptive cell transfer uses T cell-based cytotoxic responses to attack cancer cells. T cells that have a natural or genetically engineered reactivity to a patient's cancer are generated in vitro and then transferred back into the cancer patient. One study using autologous tumor-infiltrating lymphocytes was an effective treatment for patients with metastatic melanoma;.[22] This can be achieved by taking T cells that are found with the tumor of the patient, which are trained to attack the cancerous cells. These T cells are referred to as tumor-infiltrating lymphocytes (TIL) are then encouraged to multiply in vitro using high concentrations of IL-2, anti-CD3 and allo-reactive feeder cells. These T cells are then transferred back into the patient along with exogenous administration of IL-2 to further boost their anti-cancer activity.

Thus far, a 51% objective response rate has been observed; and in some patients, tumors shrank to undetectable size.[23][24]

The initial studies of adoptive cell transfer using TIL, however, revealed that persistence of the transferred cells in vivo was too short.[25] Before reinfusion, lymphodepletion of the recipient is required to eliminate regulatory T cells as well as normal endogenous lymphocytes that compete with the transferred cells for homeostatic cytokines.[22][26][27][28] Lymphodepletion was made by total body irradiation prior to transfer of the expanded TIL.[29] The trend for increasing survival as a function of increasing lymphodepletion was highly significant (P=0.007).[29] Transferred cells expanded in vivo and persisted in the peripheral blood in many patients, sometimes achieving levels of 75% of all CD8+ T cells at 6–12 months after infusion.[30] Clinical trials based on adoptive cell transfer of TILs for patients with metastatic melanoma are currently ongoing at the National Cancer Institute (Bethesda,MD,USA), Moffitt Cancer Center (Tampa,FL,USA), MD Anderson Cancer Center (Houston,TX,USA), Sheba Medical Center (Tel Hashomer,Israel), Herlev University Hospital (Herlev,Denmark) and NKI Antonie van Leeuwenhoek (Amsterdam, Netherlands).

  Genetically engineered T cells

Genetically engineered T cells are created by infecting patient's cells with a virus that contain a copy of a T cell receptor (TCR) gene that is specialised to recognise tumour antigens. The virus is not able to reproduce within the cell however integrates into the human genome. This is beneficial as new TCR gene remains stable in the T-cell. A patient's own T cells are exposed to these viruses and then expanded non-specifically or stimulated using the genetically engineered TCR. The cells are then transferred back into the patient and ready to have an immune response against the tumour. Morgan et al. (2006)[31] demonstrated that the adoptive cell transfer of lymphocytes transduced with retrovirus encoding TCRs that recognize a cancer antigen are able to mediate anti-tumour responses in patients with metastatic melanomas. This therapy has been demonstrated to result in objective clinical responses in patients with refractory stage IV cancer. The Surgery Branch of the National Cancer Institute (Bethesda, Maryland) is actively investigating this form of cancer treatment for patients suffering aggressive melanomas[citation needed]. The use of adoptive cell transfer with genetic engineered T cells is a promising new approach to the treatment of a variety of cancers.[22]

In one case study, United States doctors from the Clinical Research Division, led by Dr. Cassian Yee at Fred Hutchinson Cancer Research Center in Seattle had successfully treated a patient with advanced skin cancer by injecting the patient with immune cells cloned from his own immune system.[32] The patient was free from tumours within eight weeks of treatment. Dr. Cassian Yee described the research findings at The Cancer Research Institute International 2008 Symposia Series. [1]. Responses, however, were not seen in other patients in this clinical trial. Larger trials are now under way. [2] [3]

  Immune recovery

The potential use of immunotherapy to restore the immune system of patients with immune deficiencies as result of infection or chemotherapy. For example cytokines have been tested in clinical trials interleukin-7 has been in clinical trials for HIV and cancer patients. In addition, interleukin-2 has also been tested in HIV patients.

  Vaccination

Anti-microbial immunotherapy, which includes vaccination, involves activating the immune system to respond to an infectious agent.

  Suppression immunotherapies

Immune suppression dampens an abnormal immune response in autoimmune diseases or reduces a normal immune response to prevent rejection of transplanted organs or cells.

  Immune tolerance

Immune tolerance is the process by which the body naturally does not launch an immune system attack on its own tissues. Immune tolerance therapies seeks to reset the immune system so that the body stops mistakenly attacking its own organs or cells in autoimmune disease or accepts foreign tissue in organ transplantation.[33] A brief treatment should then reduce or eliminate the need for lifelong immunosuppression and the chances of attendant side effects, in the case of transplantation, or preserve the body's own function, at least in part, in cases of type 1 diabetes or other autoimmune disorders.

  Allergies

Immunotherapy is also used to treat allergies. While other allergy treatments (such as antihistamines or corticosteroids) treat only the symptoms of allergic disease, immunotherapy is the only available treatment that can modify the natural course of the allergic disease, by reducing sensitivity to allergens.

A one-to-five-year individually tailored regimen of injections may result in long-term benefits. Recent research suggests that patients who complete immunotherapy may continue to see benefits for years to come.[34] Immunotherapy does not work for everyone and is only partly effective in some people, but it offers allergy sufferers the chance to eventually reduce or stop symptomatic/rescue medication.

The therapy is indicated for people who are extremely allergic or who cannot avoid specific allergens. For example, they may not be able to live a normal life and completely avoid pollen, dust mites, mold spores, pet dander, insect venom, and certain other common triggers of allergic reactions. Immunotherapy is generally not indicated for food or medicinal allergies. Immunotherapy is typically individually tailored and administered by an allergist (allergologist) or through a United Allergy Services lab available through specialized physician offices. Injection schedules are available in some healthcare systems and can be prescribed by family physicians. This therapy is particularly useful for people with allergic rhinitis or asthma.

The therapy is particularly likely to be successful if it begins early in life or soon after the allergy develops for the first time. Immunotherapy involves a series of injections (shots) given regularly for several years by a specialist in a hospital clinic. In the past, this was called a serum, but this is an incorrect name. Most allergists now call this mixture an allergy extract. The first shots contain very tiny amounts of the allergen or antigen to which you are allergic. With progressively increasing dosages over time, your body will adjust to the allergen and become less sensitive to it. This process is called desensitization. A recently approved sublingual tablet (Grazax), containing a grass pollen extract, is similarly effective, with few side effects, and can be self-administered at home, including by those patients who also suffer from allergic asthma, a condition which precludes the use of injection-based desensitization. To read more about this topic, see: allergy and hyposensitization.

  Other approaches

  Helminthic therapies

Recent research into the clinical effectiveness of Whipworm ova (Trichuris suis) and Hookworm (Necator americanus) for the treatment of certain immunological diseases and allergies means that these organisms must be classified as immuno-therapeutic agents. Helminthic therapy is being investigated as a potentially highly effective treatment for the symptoms and or disease process in disorders such as relapsing remitting multiple sclerosis[35] Crohn’s,[36][37][38] allergies and asthma.[39] The precise mechanism of how the helminths modulate the immune response, ensuring their survival in the host and incidentally effectively modulating autoimmune disease processes, is currently unknown. However, several broad mechanisms have been postulated, such as a re-polarisation of the Th1 / Th2 response,[40] and modulation of dendritic cell function[41][42] The helminths down regulate the pro-inflammatory Th1 cytokines, Interleukin-12 (IL-12), Interferon-Gamma (IFN-γ) and Tumour Necrosis Factor-Alpha (TNF-ά), while promoting the production of regulatory Th2 cytokines such as IL-10, IL-4, IL-5 and IL-13.[40][43]

That helminths modulate host immune response is proven, as the core assertion of the hygiene hypothesis appears to have been, with the recent publication of a study demonstrating that co-evolution with helminths has shaped at least some of the genes associated with Interleukin expression and immunological disorders, like Crohn's, ulcerative colitis and Celiac Disease. Much of the research that has been published now indicates a key role, for what have been traditionally regarded as disease causing organisms,

  References

  1. ^ "immunotherapies definition". Dictionary.com. http://dictionary.reference.com/browse/immunotherapies?qsrc=2446. Retrieved 2009-06-02. 
  2. ^ Masihi KN (July 2001). "Fighting infection using immunomodulatory agents". Expert Opin Biol Ther 1 (4): 641–53. DOI:10.1517/14712598.1.4.641. PMID 11727500. http://informahealthcare.com/doi/abs/10.1517/14712598.1.4.641%20. 
  3. ^ http://www.medicineatmichigan.org/magazine/2003/spring/cancer-vac/default.asp
  4. ^ Rosenberg SA (January 1984). "Adoptive immunotherapy of cancer: accomplishments and prospects". Cancer Treat Rep 68 (1): 233–55. PMID 6362866. 
  5. ^ Yang Q, Hokland ME, Bryant JL, Zhang Y, Nannmark U, Watkins SC, Goldfarb RH, Herberman RB, Basse PH (July 2003). "Tumor-localization by adoptively transferred interleukin-2-activated NK cells, leading to destruction of well-established lung metastases". Int J Cancer 105 (4): 512–9. DOI:10.1002/ijc.11119. PMID 12712443. 
  6. ^ Egawa K (Sept-Oct 2004). "Immuno-cell Therapy of Cancer in Japan". Anticancer Res 24 (5C): 3321–6. PMID 15515427. 
  7. ^ Li K, Li CK, Chuen CK, et al. (February 2005). "Preclinical ex vivo expansion of G-CSF-mobilized peripheral blood stem cells: effects of serum-free media, cytokine combinations and chemotherapy". Eur. J. Haematol. 74 (2): 128–35. DOI:10.1111/j.1600-0609.2004.00343.x. PMID 15654904. http://onlinelibrary.wiley.com/resolve/openurl?genre=article&sid=nlm:pubmed&issn=0902-4441&date=2005&volume=74&issue=2&spage=128. 
  8. ^ Fujita K (1995). "Prolonged disease-free period in patients with advanced epithelial ovarian cancer after adoptive transfer of tumor-infiltrating lymphocytes". Clin Cancer 1 (5): 501–7. 
  9. ^ Kimura H; Yamaguchi, Y (July 1997). "A phase III randomized study of interleukin-2 lymphokine-activated killer cell immunotherapy combined with chemotherapy or radiotherapy after curative or noncurative resection of primary lung carcinoma". Cancer 80 (1): 42–9. DOI:10.1002/(SICI)1097-0142(19970701)80:1<42::AID-CNCR6>3.0.CO;2-H. PMID 9210707. 
  10. ^ Takayama T; Sekine, T; Makuuchi, M; Yamasaki, S; Kosuge, T; Yamamoto, J; Shimada, K; Sakamoto, M et al. (September 2000). "Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial". Lancet 356 (9232): 802–7. DOI:10.1016/S0140-6736(00)02654-4. PMID 11022927. 
  11. ^ Kono K; Takahashi, A; Ichihara, F; Amemiya, H; Iizuka, H; Fujii, H; Sekikawa, T; Matsumoto, Y (2002). "Prognostic significance of adoptive immunotherapy with tumor-associated lymphocytes in patients with advanced gastric cancer: a randomized trial". Clin Cancer Res 8 (6): 1767–71. PMID 12060615. 
  12. ^ a b Järvinen R, Kaasinen E, Sankila A, Rintala E (April 2009). "Long-term Efficacy of Maintenance Bacillus Calmette-Guérin versus Maintenance Mitomycin C Instillation Therapy in Frequently Recurrent TaT1 Tumours without Carcinoma In Situ: A Subgroup Analysis of the Prospective, Randomised FinnBladder I Study with a 20-Year Follow-up". Eur Urol 56 (2): 260–5. DOI:10.1016/j.eururo.2009.04.009. PMID 19395154. http://linkinghub.elsevier.com/retrieve/pii/S0302-2838(09)00389-3. 
  13. ^ van Seters M, van Beurden M, ten Kate FJ, et al. (April 2008). "Treatment of vulvar intraepithelial neoplasia with topical imiquimod". The New England Journal of Medicine 358 (14): 1465–73. DOI:10.1056/NEJMoa072685. PMID 18385498. http://content.nejm.org/cgi/content/full/358/14/1465. 
  14. ^ Buck HW, Guth KJ (October 2003). "Treatment of vaginal intraepithelial neoplasia (primarily low grade) with imiquimod 5% cream". Journal of lower genital tract disease 7 (4): 290–3. DOI:10.1097/00128360-200310000-00011. PMID 17051086. 
  15. ^ Davidson HC, Leibowitz MS, Lopez-Albaitero A, Ferris RL (May 2009). "Immunotherapy for head and neck cancer". Oral Oncology 45 (9): 747–51. DOI:10.1016/j.oraloncology.2009.02.009. PMID 19442565. http://linkinghub.elsevier.com/retrieve/pii/S1368-8375(09)00049-9. 
  16. ^ Dani T, Knobler R (2009). "Extracorporeal photoimmunotherapy-photopheresis". Front Biosci 14 (14): 4769–77. DOI:10.2741/3566. PMID 19273388. http://www.bioscience.org/2009/v14/af/3566/fulltext.htm. 
  17. ^ Eggermont AM, Schadendorf D (June 2009). "Melanoma and immunotherapy". Hematol Oncol Clin North Am 23 (3): 547–64, ix–x. DOI:10.1016/j.hoc.2009.03.009. PMID 19464602. http://journals.elsevierhealth.com/retrieve/pii/S0889-8588(09)00045-8. 
  18. ^ Chuang CM, Monie A, Wu A, Hung CF (May 2009). "Combination of apigenin treatment with therapeutic HPV DNA vaccination generates enhanced therapeutic antitumor effects". J Biomed Sci 16 (1): 49. DOI:10.1186/1423-0127-16-49. PMC 2705346. PMID 19473507. http://www.jbiomedsci.com/content/16/1/49. 
  19. ^ Pawlita M, Gissmann L (April 2009). "[Recurrent respiratory papillomatosis: indication for HPV vaccination?"] (in German). Deutsche Medizinische Wochenschrift 134 (Suppl 2): S100–2. DOI:10.1055/s-0029-1220219. PMID 19353471. http://www.thieme-connect.com/DOI/DOI?10.1055/s-0029-1220219. 
  20. ^ Kang N, Zhou J, Zhang T, et al. (August 2009). "Adoptive immunotherapy of lung cancer with immobilized anti-TCRgammadelta antibody-expanded human gammadelta T cells in peripheral blood". Cancer Biology & Therapy 8 (16): 1540–9. DOI:10.4161/cbt.8.16.8950. PMID 19471115. 
  21. ^ Overes IM, Fredrix H, Kester MG, et al. (May 2009). "Efficient Activation of LRH-1-specific CD8+ T-cell Responses From Transplanted Leukemia Patients by Stimulation With P2X5 mRNA-electroporated Dendritic Cells". J Immunother 32 (6): 539–51. DOI:10.1097/CJI.0b013e3181987c22. PMID 19483655. http://meta.wkhealth.com/pt/pt-core/template-journal/lwwgateway/media/landingpage.htm?issn=1524-9557&volume=&issue=&spage=. 
  22. ^ a b c Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (April 2008). "Adoptive cell transfer: a clinical path to effective cancer immunotherapy". Nat. Rev. Cancer 8 (4): 299–308. DOI:10.1038/nrc2355. PMC 2553205. PMID 18354418. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2553205. 
  23. ^ Motohashi S, Nakayama T (2009). "Natural killer T cell-mediated immunotherapy for malignant diseases". Front Biosci (Schol Ed) 1: 108–116. PMID 19482686. http://www.bioscience.org/2009/v1s/af/10/fulltext.htm. 
  24. ^ Khattar M, Chen W, Stepkowski SM (May 2009). "Expanding and converting regulatory T cells: a horizon for immunotherapy". Arch Immunol Ther Exp (Warsz) 57 (3): 199–204. DOI:10.1007/s00005-009-0021-1. PMID 19479206. 
  25. ^ Rosenberg, SA; Aebersold, P; Cornetta, K; Kasid, A; Morgan, RA; Moen, R; Karson, EM; Lotze, MT et al. (1990). "Gene transfer into humans--immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction". The New England Journal of Medicine 323 (9): 570–8. DOI:10.1056/NEJM199008303230904. PMID 2381442. 
  26. ^ Antony PA, Piccirillo CA, Akpinarli A, et al. (March 2005). "CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells". J. Immunol. 174 (5): 2591–601. PMC 1403291. PMID 15728465. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1403291. 
  27. ^ Gattinoni L, Finkelstein SE, Klebanoff CA, et al. (October 2005). "Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells". J. Exp. Med. 202 (7): 907–12. DOI:10.1084/jem.20050732. PMC 1397916. PMID 16203864. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1397916. 
  28. ^ Dummer W, Niethammer AG, Baccala R, et al. (July 2002). "T cell homeostatic proliferation elicits effective antitumor autoimmunity". J. Clin. Invest. 110 (2): 185–92. DOI:10.1172/JCI15175. PMC 151053. PMID 12122110. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=151053. 
  29. ^ a b Dudley ME, Yang JC, Sherry R, et al. (November 2008). "Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens". J. Clin. Oncol. 26 (32): 5233–9. DOI:10.1200/JCO.2008.16.5449. PMC 2652090. PMID 18809613. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2652090. 
  30. ^ Dudley ME, Wunderlich JR, Robbins PF, et al. (October 2002). "Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes". Science 298 (5594): 850–4. DOI:10.1126/science.1076514. PMC 1764179. PMID 12242449. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1764179. 
  31. ^ Morgan RA, Dudley ME, Wunderlich JR, et al. (October 2006). "Cancer regression in patients after transfer of genetically engineered lymphocytes". Science 314 (5796): 126–9. DOI:10.1126/science.1129003. PMC 2267026. PMID 16946036. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2267026. 
  32. ^ Hunder N, Wallen H, Cao J, Hendricks D,Reilly J, Rodmyre R, Jungbluth A, Gnjatic S, Thompson J, and Yee C (2008). "Treatment of Metastatic Melanoma with Autologous CD4+ T Cells against NY-ESO-1". N. Engl. J. Med. 358 (25): 2698–2703. DOI:10.1056/NEJMoa0800251. PMC 3277288. PMID 18565862. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3277288. 
  33. ^ Rotrosen D, Matthews JB, Bluestone JA (2002). "The immune tolerance network: a new paradigm for developing tolerance-inducing therapies". J. Allergy Clin. Immunol. 110 (1): 17–23. DOI:10.1067/mai.2002.124258. PMID 12110811. 
  34. ^ Durham SR, Walker SM, Varga EM, et al. (1999). "Long-term clinical efficacy of grass-pollen immunotherapy". N. Engl. J. Med. 341 (7): 468–75. DOI:10.1056/NEJM199908123410702. PMID 10441602. 
  35. ^ Correale J, Farez M (February 2007). "Association between parasite infection and immune responses in multiple sclerosis". Ann. Neurol. 61 (2): 97–108. DOI:10.1002/ana.21067. PMID 17230481. 
  36. ^ Croese J, O'neil J, Masson J, et al. (January 2006). "A proof of concept study establishing Necator americanus in Crohn's patients and reservoir donors". Gut 55 (1): 136–7. DOI:10.1136/gut.2005.079129. PMC 1856386. PMID 16344586. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1856386. 
  37. ^ Reddy A, Fried B (January 2009). "An update on the use of helminths to treat Crohn's and other autoimmunune diseases". Parasitol. Res. 104 (2): 217–21. DOI:10.1007/s00436-008-1297-5. PMID 19050918. 
  38. ^ Laclotte C, Oussalah A, Rey P, et al. (December 2008). "[Helminths and inflammatory bowel diseases]" (in French). Gastroenterol. Clin. Biol. 32 (12): 1064–74. DOI:10.1016/j.gcb.2008.04.030. PMID 18619749. 
  39. ^ Zaccone P, Fehervari Z, Phillips JM, Dunne DW, Cooke A (October 2006). "Parasitic worms and inflammatory diseases". Parasite Immunol. 28 (10): 515–23. DOI:10.1111/j.1365-3024.2006.00879.x. PMC 1618732. PMID 16965287. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1618732. 
  40. ^ a b Brooker S, Bethony J, Hotez PJ (2004). "Human Hookworm Infection in the 21st Century". Adv. Parasitol. 58: 197–288. DOI:10.1016/S0065-308X(04)58004-1. PMC 2268732. PMID 15603764. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2268732. 
  41. ^ Fujiwara RT, Cançado GG, Freitas PA, et al. (2009). Yazdanbakhsh, Maria. ed. "Necator americanus Infection: A Possible Cause of Altered Dendritic Cell Differentiation and Eosinophil Profile in Chronically Infected Individuals". PLoS Negl Trop Dis 3 (3): e399. DOI:10.1371/journal.pntd.0000399. PMC 2654967. PMID 19308259. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2654967. 
  42. ^ Carvalho L, Sun J, Kane C, Marshall F, Krawczyk C, Pearce EJ (January 2009). "Review series on helminths, immune modulation and the hygiene hypothesis: Mechanisms underlying helminth modulation of dendritic cell function". Immunology 126 (1): 28–34. DOI:10.1111/j.1365-2567.2008.03008.x. PMC 2632707. PMID 19120496. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2632707. 
  43. ^ Fumagalli M, Pozzoli U, Cagliani R, et al. (June 2009). "Parasites represent a major selective force for interleukin genes and shape the genetic predisposition to autoimmune conditions". J. Exp. Med. 206 (6): 1395–408. DOI:10.1084/jem.20082779. PMC 2715056. PMID 19468064. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2715056. 

  External links

   
               

 

Toutes les traductions de Immunotherapy


Contenu de sensagent

  • définitions
  • synonymes
  • antonymes
  • encyclopédie

dictionnaire et traducteur pour sites web

Alexandria

Une fenêtre (pop-into) d'information (contenu principal de Sensagent) est invoquée un double-clic sur n'importe quel mot de votre page web. LA fenêtre fournit des explications et des traductions contextuelles, c'est-à-dire sans obliger votre visiteur à quitter votre page web !

Essayer ici, télécharger le code;

SensagentBox

Avec la boîte de recherches Sensagent, les visiteurs de votre site peuvent également accéder à une information de référence pertinente parmi plus de 5 millions de pages web indexées sur Sensagent.com. Vous pouvez Choisir la taille qui convient le mieux à votre site et adapter la charte graphique.

Solution commerce électronique

Augmenter le contenu de votre site

Ajouter de nouveaux contenus Add à votre site depuis Sensagent par XML.

Parcourir les produits et les annonces

Obtenir des informations en XML pour filtrer le meilleur contenu.

Indexer des images et définir des méta-données

Fixer la signification de chaque méta-donnée (multilingue).


Renseignements suite à un email de description de votre projet.

Jeux de lettres

Les jeux de lettre français sont :
○   Anagrammes
○   jokers, mots-croisés
○   Lettris
○   Boggle.

Lettris

Lettris est un jeu de lettres gravitationnelles proche de Tetris. Chaque lettre qui apparaît descend ; il faut placer les lettres de telle manière que des mots se forment (gauche, droit, haut et bas) et que de la place soit libérée.

boggle

Il s'agit en 3 minutes de trouver le plus grand nombre de mots possibles de trois lettres et plus dans une grille de 16 lettres. Il est aussi possible de jouer avec la grille de 25 cases. Les lettres doivent être adjacentes et les mots les plus longs sont les meilleurs. Participer au concours et enregistrer votre nom dans la liste de meilleurs joueurs ! Jouer

Dictionnaire de la langue française
Principales Références

La plupart des définitions du français sont proposées par SenseGates et comportent un approfondissement avec Littré et plusieurs auteurs techniques spécialisés.
Le dictionnaire des synonymes est surtout dérivé du dictionnaire intégral (TID).
L'encyclopédie française bénéficie de la licence Wikipedia (GNU).

Copyright

Les jeux de lettres anagramme, mot-croisé, joker, Lettris et Boggle sont proposés par Memodata.
Le service web Alexandria est motorisé par Memodata pour faciliter les recherches sur Ebay.
La SensagentBox est offerte par sensAgent.

Traduction

Changer la langue cible pour obtenir des traductions.
Astuce: parcourir les champs sémantiques du dictionnaire analogique en plusieurs langues pour mieux apprendre avec sensagent.

 

4556 visiteurs en ligne

calculé en 0,046s


Je voudrais signaler :
section :
une faute d'orthographe ou de grammaire
un contenu abusif (raciste, pornographique, diffamatoire)
une violation de copyright
une erreur
un manque
autre
merci de préciser :