Mon compte

connexion

inscription

   Publicité E▼


 » 
allemand anglais arabe bulgare chinois coréen croate danois espagnol espéranto estonien finnois français grec hébreu hindi hongrois islandais indonésien italien japonais letton lituanien malgache néerlandais norvégien persan polonais portugais roumain russe serbe slovaque slovène suédois tchèque thai turc vietnamien
allemand anglais arabe bulgare chinois coréen croate danois espagnol espéranto estonien finnois français grec hébreu hindi hongrois islandais indonésien italien japonais letton lituanien malgache néerlandais norvégien persan polonais portugais roumain russe serbe slovaque slovène suédois tchèque thai turc vietnamien

Significations et usages de Partial_pressure

Définition

⇨ voir la définition de Wikipedia

   Publicité ▼

Synonymes

Partial Pressure (n.) (MeSH)

H01.671.691.714

Dictionnaire analogique

Partial Pressure (n.) [MeSH]

Pressure[Hyper.]


   Publicité ▼

Wikipedia

Partial pressure

                   

In a mixture of ideal gases, each gas has a partial pressure which is the pressure which the gas would have if it alone occupied the volume.[1] The total pressure of a gas mixture is the sum of the partial pressures of each individual gas in the mixture.

In chemistry, the partial pressure of a gas in a mixture of gases is defined as above. The partial pressure of a gas dissolved in a liquid is the partial pressure of that gas which would be generated in a gas phase in equilibrium with the liquid at the same temperature. The partial pressure of a gas is a measure of thermodynamic activity of the gas's molecules. Gases will always flow from a region of higher partial pressure to one of lower pressure; the larger this difference, the faster the flow. Gases dissolve, diffuse, and react according to their partial pressures, and not according to their concentrations in gas mixtures or liquids.

This general property of gases is also true of chemical reactions of gases in biology. For example, the necessary amount of oxygen for human respiration, and the amount that is toxic, is set by the partial pressure of oxygen alone. This is true across a very wide range of different concentrations of oxygen present in various inhaled breathing gases, or dissolved in blood.

Contents

  Dalton's law of partial pressures

The partial pressure of an ideal gas in a mixture is equal to the pressure it would exert if it occupied the same volume alone at the same temperature. This is because ideal gas molecules are so far apart that they don't interfere with each other at all. Actual real-world gases come very close to this ideal.

A consequence of this is that the total pressure of a mixture of ideal gases is equal to the sum of the partial pressures of the individual gases in the mixture as stated by Dalton's law.[2] For example, given an ideal gas mixture of nitrogen (N2), hydrogen (H2) and ammonia (NH3):

p = p_{{\mathrm{N}}_2} + p_{{\mathrm{H}}_2} + p_{{\mathrm{NH}}_3}
where:  
p \, = total pressure of the gas mixture
p_{{\mathrm{N}}_2} = partial pressure of nitrogen (N2)
p_{{\mathrm{H}}_2} = partial pressure of hydrogen (H2)
p_{{\mathrm{NH}}_3} = partial pressure of ammonia (NH3)

  Ideal gas mixtures

Ideally the ratio of partial pressures is the same as the ratio of molecules. That is, the mole fraction of an individual gas component in an ideal gas mixture can be expressed in terms of the component's partial pressure or the moles of the component:

x_{\mathrm{i}} = \frac{p_{\mathrm{i}}}{p} = \frac{n_{\mathrm{i}}}{n}

and the partial pressure of an individual gas component in an ideal gas can be obtained using this expression:

p_{\mathrm{i}} = x_{\mathrm{i}} \cdot p
where:  
x_{\mathrm{i}} = mole fraction of any individual gas component in a gas mixture
p_{\mathrm{i}} = partial pressure of any individual gas component in a gas mixture
n_{\mathrm{i}} = moles of any individual gas component in a gas mixture
n = total moles of the gas mixture
p = total pressure of the gas mixture

The mole fraction of a gas component in a gas mixture is equal to the volumetric fraction of that component in a gas mixture.[3]

  Partial volume (Amagat's law of additive volume)

The partial volume of a particular gas is the volume which the gas would have if it alone occupied the volume, with unchanged pressure and temperature, and is useful in gas mixtures, e.g. air, to focus on one particular gas component, e.g. oxygen.

It can be approximated both from partial pressure and molar fraction:[4]

V_x = V_{tot} \times \frac{p_x}{p_{tot}} = V_{tot} \times \frac{n_x}{n_{tot}}
  • Vx is the partial volume of any individual gas component (X)
  • Vtot is the total volume in gas mixture
  • px is the partial pressure of gas X
  • ptot is the total pressure of gas mixture
  • nx is the amount of substance of a gas (X)
  • ntot is the total amount of substance in gas mixture

  Vapor pressure

  A typical vapor pressure chart for various liquids

Vapor pressure is the pressure of a vapor in equilibrium with its non-vapor phases (i.e., liquid or solid). Most often the term is used to describe a liquid's tendency to evaporate. It is a measure of the tendency of molecules and atoms to escape from a liquid or a solid. A liquid's atmospheric pressure boiling point corresponds to the temperature at which its vapor pressure is equal to the surrounding atmospheric pressure and it is often called the normal boiling point.

The higher the vapor pressure of a liquid at a given temperature, the lower the normal boiling point of the liquid.

The vapor pressure chart to the right has graphs of the vapor pressures versus temperatures for a variety of liquids.[5] As can be seen in the chart, the liquids with the highest vapor pressures have the lowest normal boiling points.

For example, at any given temperature, methyl chloride has the highest vapor pressure of any of the liquids in the chart. It also has the lowest normal boiling point (-24.2 °C), which is where the vapor pressure curve of methyl chloride (the blue line) intersects the horizontal pressure line of one atmosphere (atm) of absolute vapor pressure.

  Equilibrium constants of reactions involving gas mixtures

It is possible to work out the equilibrium constant for a chemical reaction involving a mixture of gases given the partial pressure of each gas and the overall reaction formula. For a reversible reaction involving gas reactants and gas products, such as:

a\,A + b\,B \leftrightarrow c\,C + d\,D

the equilibrium constant of the reaction would be:

K_p = \frac{p_C^c\, p_D^d} {p_A^a\, p_B^b}
where:  
K_p =  the equilibrium constant of the reaction
a =  coefficient of reactant A
b =  coefficient of reactant B
c =  coefficient of product C
d =  coefficient of product D
p_C^c =  the partial pressure of C raised to the power of c
p_D^d =  the partial pressure of D raised to the power of d
p_A^a =  the partial pressure of A raised to the power of a
p_B^b =  the partial pressure of B raised to the power of b

For reversible reactions, changes in the total pressure, temperature or reactant concentrations will shift the equilibrium so as to favor either the right or left side of the reaction in accordance with Le Chatelier's Principle. However, the reaction kinetics may either oppose or enhance the equilibrium shift. In some cases, the reaction kinetics may be the over-riding factor to consider.

  Henry's Law and the solubility of gases

Gases will dissolve in liquids to an extent that is determined by the equilibrium between the undissolved gas and the gas that has dissolved in the liquid (called the solvent).[6] The equilibrium constant for that equilibrium is:

(1)     k = \frac {p_x}{C_x}
where:  
k =  the equilibrium constant for the solvation process
p_x =  partial pressure of gas x in equilibrium with a solution containing some of the gas
C_x =  the concentration of gas x in the liquid solution

The form of the equilibrium constant shows that the concentration of a solute gas in a solution is directly proportional to the partial pressure of that gas above the solution. This statement is known as Henry's Law and the equilibrium constant k is quite often referred to as the Henry's Law constant.[6][7][8]

Henry's Law is sometimes written as:[9]

(2)     k' = \frac {C_x}{p_x}

where k' is also referred to as the Henry's Law constant.[9] As can be seen by comparing equations (1) and (2) above, k' is the reciprocal of k. Since both may be referred to as the Henry's Law constant, readers of the technical literature must be quite careful to note which version of the Henry's Law equation is being used.

Henry's Law is an approximation that only applies for dilute, ideal solutions and for solutions where the liquid solvent does not react chemically with the gas being dissolved.

  Partial pressure in diving breathing gases

In recreational diving and professional diving the richness of individual component gases of breathing gases is expressed by partial pressure.

Using diving terms, partial pressure is calculated as:

partial pressure = (total absolute pressure) × (volume fraction of gas component)

For the component gas "i":

ppi = P × Fi

For example, at 50 metres (165 feet), the total absolute pressure is 6 bar (600 kPa) (i.e., 1 bar of atmospheric pressure + 5 bar of water pressure) and the partial pressures of the main components of air, oxygen 21% by volume and nitrogen 79% by volume are:

ppN2 = 6 bar × 0.79 = 4.7 bar absolute
ppO2 = 6 bar × 0.21 = 1.3 bar absolute
where:  
ppi = partial pressure of gas component i  = P_{\mathrm{i}} in the terms used in this article
P = total pressure = P in the terms used in this article
Fi = volume fraction of gas component i  =  mole fraction, x_{\mathrm{i}}, in the terms used in this article
ppN2 = partial pressure of nitrogen  = P_{{\mathrm{N}}_2} in the terms used in this article
ppO2 = partial pressure of oxygen  = P_{{\mathrm{O}}_2} in the terms used in this article

The minimum safe lower limit for the partial pressures of oxygen in a gas mixture is 0.16 bar (16 kPa) absolute. Hypoxia and sudden unconsciousness becomes a problem with an oxygen partial pressure of less than 0.16 bar absolute. Oxygen toxicity, involving convulsions, becomes a problem when oxygen partial pressure is too high. The NOAA Diving Manual recommends a maximum single exposure of 45 minutes at 1.6 bar absolute, of 120 minutes at 1.5 bar absolute, of 150 minutes at 1.4 bar absolute, of 180 minutes at 1.3 bar absolute and of 210 minutes at 1.2 bar absolute. Oxygen toxicity becomes a risk when these oxygen partial pressures and exposures are exceeded. The partial pressure of oxygen determines the maximum operating depth of a gas mixture.

Nitrogen narcosis is a problem when breathing gases at high pressure. Typically, the maximum total partial pressure of narcotic gases used when planning for technical diving is 4.5 bar absolute, based on an equivalent narcotic depth of 35 metres (115 ft).

  In medicine

The partial pressures of particularly oxygen (p_{{\mathrm{O}}_2}) and carbon dioxide (p_{{\mathrm{CO}}_2}) are important parameters in tests of arterial blood gases, but can also be measured in, for example, cerebrospinal fluid.

Reference ranges for p_{{\mathrm{O}}_2} and p_{{\mathrm{CO}}_2}
Unit Arterial blood gas Venous blood gas Cerebrospinal fluid Alveolar pulmonary
gas pressures
p_{{\mathrm{O}}_2} kPa 11–13[10] 4.0–5.3[10] 5.3–5.9[10] 14.2
mmHg 75–100[11] 30–40[12] 40–44[13] 107
p_{{\mathrm{CO}}_2} kPa 4.7–6.0[10] 5.5–6.8[10] 5.9–6.7[10] 4.8
mmHg 35–45[11] 41–51[12] 44–50[13] 36

  See also

  References

  1. ^ Charles Henrickson (2005). Chemistry. Cliffs Notes. ISBN 0-7645-7419-1. 
  2. ^ Dalton's Law of Partial Pressures
  3. ^ Frostberg State University's "General Chemistry Online"
  4. ^ Page 200 in: Medical biophysics. Flemming Cornelius. 6th Edition, 2008.
  5. ^ Perry, R.H. and Green, D.W. (Editors) (1997). Perry's Chemical Engineers' Handbook (7th ed.). McGraw-Hill. ISBN 0-07-049841-5. 
  6. ^ a b An extensive list of Henry's law constants, and a conversion tool
  7. ^ Francis L. Smith and Allan H. Harvey (September 2007). "Avoid Common Pitfalls When Using Henry's Law". CEP (Chemical Engineering Progress). ISSN 0360-7275. 
  8. ^ Introductory University Chemistry, Henry's Law and the Solubility of Gases
  9. ^ a b University of Arizona chemistry class notes
  10. ^ a b c d e f Derived from mmHg values using 0.133322 kPa/mmHg
  11. ^ a b Normal Reference Range Table from The University of Texas Southwestern Medical Center at Dallas. Used in Interactive Case Study Companion to Pathologic basis of disease.
  12. ^ a b The Medical Education Division of the Brookside Associates--> ABG (Arterial Blood Gas) Retrieved on Dec 6, 2009
  13. ^ a b PATHOLOGY 425 CEREBROSPINAL FLUID [CSF] at the Department of Pathology and Laboratory Medicine at the University of British Columbia. By Dr. G.P. Bondy. Retrieved November 2011
   
               

 

Toutes les traductions de Partial_pressure


Contenu de sensagent

  • définitions
  • synonymes
  • antonymes
  • encyclopédie

dictionnaire et traducteur pour sites web

Alexandria

Une fenêtre (pop-into) d'information (contenu principal de Sensagent) est invoquée un double-clic sur n'importe quel mot de votre page web. LA fenêtre fournit des explications et des traductions contextuelles, c'est-à-dire sans obliger votre visiteur à quitter votre page web !

Essayer ici, télécharger le code;

SensagentBox

Avec la boîte de recherches Sensagent, les visiteurs de votre site peuvent également accéder à une information de référence pertinente parmi plus de 5 millions de pages web indexées sur Sensagent.com. Vous pouvez Choisir la taille qui convient le mieux à votre site et adapter la charte graphique.

Solution commerce électronique

Augmenter le contenu de votre site

Ajouter de nouveaux contenus Add à votre site depuis Sensagent par XML.

Parcourir les produits et les annonces

Obtenir des informations en XML pour filtrer le meilleur contenu.

Indexer des images et définir des méta-données

Fixer la signification de chaque méta-donnée (multilingue).


Renseignements suite à un email de description de votre projet.

Jeux de lettres

Les jeux de lettre français sont :
○   Anagrammes
○   jokers, mots-croisés
○   Lettris
○   Boggle.

Lettris

Lettris est un jeu de lettres gravitationnelles proche de Tetris. Chaque lettre qui apparaît descend ; il faut placer les lettres de telle manière que des mots se forment (gauche, droit, haut et bas) et que de la place soit libérée.

boggle

Il s'agit en 3 minutes de trouver le plus grand nombre de mots possibles de trois lettres et plus dans une grille de 16 lettres. Il est aussi possible de jouer avec la grille de 25 cases. Les lettres doivent être adjacentes et les mots les plus longs sont les meilleurs. Participer au concours et enregistrer votre nom dans la liste de meilleurs joueurs ! Jouer

Dictionnaire de la langue française
Principales Références

La plupart des définitions du français sont proposées par SenseGates et comportent un approfondissement avec Littré et plusieurs auteurs techniques spécialisés.
Le dictionnaire des synonymes est surtout dérivé du dictionnaire intégral (TID).
L'encyclopédie française bénéficie de la licence Wikipedia (GNU).

Copyright

Les jeux de lettres anagramme, mot-croisé, joker, Lettris et Boggle sont proposés par Memodata.
Le service web Alexandria est motorisé par Memodata pour faciliter les recherches sur Ebay.
La SensagentBox est offerte par sensAgent.

Traduction

Changer la langue cible pour obtenir des traductions.
Astuce: parcourir les champs sémantiques du dictionnaire analogique en plusieurs langues pour mieux apprendre avec sensagent.

 

5269 visiteurs en ligne

calculé en 0,031s


Je voudrais signaler :
section :
une faute d'orthographe ou de grammaire
un contenu abusif (raciste, pornographique, diffamatoire)
une violation de copyright
une erreur
un manque
autre
merci de préciser :