Mon compte

connexion

inscription

   Publicité R▼


 » 
allemand anglais arabe bulgare chinois coréen croate danois espagnol espéranto estonien finnois français grec hébreu hindi hongrois islandais indonésien italien japonais letton lituanien malgache néerlandais norvégien persan polonais portugais roumain russe serbe slovaque slovène suédois tchèque thai turc vietnamien
allemand anglais arabe bulgare chinois coréen croate danois espagnol espéranto estonien finnois français grec hébreu hindi hongrois islandais indonésien italien japonais letton lituanien malgache néerlandais norvégien persan polonais portugais roumain russe serbe slovaque slovène suédois tchèque thai turc vietnamien

Significations et usages de Roentgenium

Définition

roentgenium (n.)

1.a radioactive transuranic element

   Publicité ▼

Définition (complément)

⇨ voir la définition de Wikipedia

Synonymes

roentgenium (n.)

atomic number 111, element 111, Rg

   Publicité ▼

Locutions

Dictionnaire analogique

roentgenium (n.)


Wikipedia

Roentgenium

                   
darmstadtiumroentgeniumcopernicium
Au

Rg

(Uhu)
Appearance
unknown
General properties
Name, symbol, number roentgenium, Rg, 111
Pronunciation Listeni/rʌntˈɡɛniəm/
runt-GEN-ee-əm
or /rɛntˈɡɛniəm/
rent-GEN-ee-əm
Element category unknown
Group, period, block 117, d
Standard atomic weight [281]
Electron configuration [Rn] 5f14 6d9 7s2
(predicted)[1]
Electrons per shell 2, 8, 18, 32, 32, 17, 2
(predicted)[1] (Image)
Physical properties
Phase Unknown
Atomic properties
Oxidation states −1, +1, +3, +5[2]
(a guess based on that of gold)
Covalent radius 121 (estimated)[3] pm
Miscellanea
CAS registry number 54386-24-2
Most stable isotopes
Main article: Isotopes of roentgenium
iso NA half-life DM DE (MeV) DP
282Rg syn 0.5 s α 9.00 278Mt
281Rg syn 26 s SF
280Rg syn 3.6 s α 9.75 276Mt
279Rg syn 170 ms α 10.37 275Mt
278Rg syn 4.2 ms α 10.69 274Mt
274Rg syn 15 ms α 11.23 270Mt
272Rg syn 1.6 ms α 11.02,10.82 268Mt
· r

Roentgenium (formerly unununium) is a synthetic radioactive chemical element with the symbol Rg and atomic number 111. It is placed as the heaviest member of the group 11 (IB) elements, although a sufficiently stable isotope has not yet been produced in a sufficient amount that would confirm this position as a heavier homologue of gold.

Roentgenium was first observed in 1994 and several isotopes have been synthesized since its discovery. The most stable known isotope is 281Rg with a half-life of ~26 seconds,[4] which decays by spontaneous fission, like many other N=170 isotones.

Contents

  History

  Official discovery

Roentgenium was officially discovered by an international team led by Sigurd Hofmann at the Gesellschaft für Schwerionenforschung (GSI) in Darmstadt, Germany, on December 8, 1994.[5] Only three atoms of it were observed (all 272Rg), by the cold fusion between nickel ions and a bismuth target in a linear accelerator:

209
83
Bi
+ 64
28
Ni
272
111
Rg
+ 1
0
n

In 2001, the IUPAC/IUPAP Joint Working Party (JWP) concluded that there was insufficient evidence for the discovery at that time.[6] The GSI team repeated their experiment in 2002 and detected three more atoms.[7][8] In their 2003 report, the JWP decided that the GSI team should be acknowledged for the discovery of this element.[9]

  Naming

The name roentgenium (Rg) was recommended by the GSI team[10] in honor of the German physicist (and X-ray discoverer) Wilhelm Conrad Röntgen in 2004.[11] This name was accepted by IUPAC on November 1, 2004 and approved by IUPAP on November 4, 2011.[12] Previously, the element was known under the temporary IUPAC systematic element name unununium with symbol Uuu.[13]

  Nucleosynthesis

Target-projectile combinations leading to Z=111 compound nuclei

The below table contains various combinations of targets and projectiles (both at max no. of neutrons) which could be used to form compound nuclei with Z=111.

Target Projectile CN Attempt result
208Pb 65Cu 273Rg Successful reaction
209Bi 64Ni 273Rg Successful reaction
232Th 45Sc 277Rg Reaction yet to be attempted[citation needed]
231Pa 48Ca 279Rg Reaction yet to be attempted[citation needed]
238U 41K 280Rg Reaction yet to be attempted[citation needed]
237Np 40Ar 277Rg Reaction yet to be attempted[citation needed]
244Pu 37Cl 281Rg Reaction yet to be attempted[citation needed]
243Am 36S 279Rg Reaction yet to be attempted[citation needed]
248Cm 31P 279Rg Reaction yet to be attempted[citation needed]
249Bk 30Si 279Rg Reaction yet to be attempted[citation needed]
249Cf 27Al 276Rg Reaction yet to be attempted[citation needed]

  Cold fusion

This section deals with the synthesis of nuclei of roentgenium by so-called "cold" fusion reactions. These are processes which create compound nuclei at low excitation energy (~10–20 MeV, hence "cold"), leading to a higher probability of survival from fission. The excited nucleus then decays to the ground state via the emission of one or two neutrons only.

209Bi(64Ni,xn)273−xRg (x=1)

First experiments to synthesize roentgenium were performed by the Dubna team in 1986 using this cold fusion reaction. No atoms were identified that could be assigned to atoms of roentgenium and a production cross-section limit of 4 pb was determined. After an upgrade of their facilities, the team at GSI successfully detected 3 atoms of 272Rg in their discovery experiment.[5] A further 3 atoms were synthesized in 2000.[7] The discovery of roentgenium was confirmed in 2003 when a team at RIKEN measured the decays of 14 atoms of 272Rg during the measurement of the 1n excitation function.[14]

208Pb(65Cu,xn)273−xRg (x=1)

In 2004, as part of their study of odd-Z projectiles in cold fusion reactions, the team at LBNL detected a single atom of 272Rg in this new reaction.[15][16]

  As decay product

Isotopes of roentgenium have also been observed in the decay of heavier elements. Observations to date are outlined in the table below:

Evaporation residue Observed Rg isotope
288Uup 280Rg [17]
287Uup 279Rg [17]
282Uut 278Rg [18]
278Uut 274Rg [18]

  Isotopes

Chronology of isotope discovery
Isotope Year discovered Discovery reaction
272Rg 1994 209Bi(64Ni,n)
273Rg unknown
274Rg 2004 209Bi(70Zn,n) [18]
275Rg unknown
276Rg unknown
277Rg unknown
278Rg 2006 237Np(48Ca,3n) [18]
279Rg 2003 243Am(48Ca,4n) [17]
280Rg 2003 243Am(48Ca,3n) [17]
281Rg 2009 249Bk(48Ca,4n)[4]
282Rg 2009 249Bk(48Ca,3n)[4]

  Nuclear isomerism

274Rg

Two atoms of 274Rg have been observed in the decay chains starting with 278Uut. The two events occur with different energies and with different lifetimes. In addition, the two entire decay chains appear to be different. This suggests the presence of two isomeric levels but further research is required.

272Rg

The direct production of 272Rg has provided four alpha lines at 11.37, 11.03, 10.82, and 10.40 MeV. The GSI measured a half-life of 1.6 ms whilst recent data from RIKEN have given a half-life of 3.8 ms. The conflicting data may be due to isomeric levels but the current data are insufficient to come to any firm assignments.

  Chemical properties

  Electronic structure (relativistic)

The stable group 11 elements, copper, silver, and gold all have an outer electron configuration nd10(n+1)s1. For each of these elements, the first excited state of their atoms has a configuration nd9(n+1)s2. Due to spin-orbit coupling between the d electrons, this state is split into a pair of energy levels. For copper, the difference in energy between the ground state and lowest excited state causes the metal to appear reddish. For silver, the energy gap widens and it becomes silvery. However, as Z increases, the excited levels are stabilized by relativistic effects and in gold the energy gap decreases again and it appears gold. For roentgenium, calculations indicate that the 6d97s2 level is stabilized to such an extent that it becomes the ground state. The resulting energy difference between the new ground state and the first excited state is similar to that of silver and roentgenium is expected to be silvery in appearance.[19]

  Extrapolated chemical properties

  Oxidation states

Roentgenium is projected to be the ninth member of the 6d series of transition metals and the heaviest member of group 11 (IB) in the Periodic Table, below copper, silver, and gold. Each of the members of this group show different stable states. Copper forms a stable +2 state, while silver is predominantly found as silver(I) and gold as gold(I) or gold(III). Copper(I) and silver(II) are also relatively well-known. Roentgenium is therefore expected to predominantly form a stable +3 state. Gold also forms a somewhat stable -1 state due to relativistic effects, and roentgenium may do so as well.

  Chemistry

The heavier members of this group are well known for their lack of reactivity or noble character. Silver and gold are both inert to oxygen, but are attacked by the halogens. In addition, silver is attacked by sulfur and hydrogen sulfide, highlighting its higher reactivity compared to gold. Roentgenium is expected to be even more noble than gold and can be expected to be inert to oxygen and halogens. The most-likely reaction is with fluorine to form a trifluoride, RgF3.

  See also

  References

  1. ^ a b Turler, A. (2004). "Gas Phase Chemistry of Superheavy Elements". Journal of Nuclear and Radiochemical Sciences 5 (2): R19–R25. http://wwwsoc.nii.ac.jp/jnrs/paper/JN52/j052Turler.pdf. 
  2. ^ Haire, Richard G. (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean. The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. p. 1674–75. ISBN 1-4020-3555-1. 
  3. ^ Chemical Data. Roentgenium - Rg, Royal Chemical Society
  4. ^ a b c Oganessian, Yu. Ts.; Abdullin, F. Sh.; Bailey, P. D.; Benker, D. E.; Bennett, M. E.; Dmitriev, S. N.; Ezold, J. G.; Hamilton, J. H. et al. (2010). "Synthesis of a New Element with Atomic Number Z=117". Physical Review Letters 104 (14): 142502. Bibcode 2010PhRvL.104n2502O. DOI:10.1103/PhysRevLett.104.142502. PMID 20481935. 
  5. ^ a b Hofmann, S.; Ninov, V.; Heßberger, F. P.; Armbruster, P.; Folger, H.; Münzenberg, G.; Schött, H. J.; Popeko, A. G. et al. (1995). "The new element 111". Zeitschrift für Physik A 350 (4): 281. Bibcode 1995ZPhyA.350..281H. DOI:10.1007/BF01291182. 
  6. ^ Karol et al.; Nakahara, H.; Petley, B. W.; Vogt, E. (2001). "On the discovery of the elements 110–112". Pure Appl. Chem. 73 (6): 959–967. DOI:10.1351/pac200173060959. http://iupac.org/publications/pac/2001/pdf/7306x0959.pdf. 
  7. ^ a b Hofmann, S.; Heßberger, F.P.; Ackermann, D.; Münzenberg, G.; Antalic, S.; Cagarda, P.; Kindler, B.; Kojouharova, J. et al. (2002). "New results on elements 111 and 112". The European Physical Journal A 14 (2): 147. DOI:10.1140/epja/i2001-10119-x. 
  8. ^ Hofmann et al.. "New results on element 111 and 112". GSI report 2000. http://www.gsi.de/informationen/wti/library/scientificreport2000/Nuc_St/7/ar-2000-z111-z112.pdf. Retrieved 2008-03-02. 
  9. ^ Karol, P.J.; Nakahara, H.; Petley, B.W.; Vogt, E. (2003). "Karol et al". Pure Appl. Chem. 75 (10): 1601–1611. DOI:10.1351/pac200375101601. http://iupac.org/publications/pac/2003/pdf/7510x1601.pdf. 
  10. ^ Corish et al.. "Name and symbol of the element with atomic number 111". IUPAC Provisional Recommendations. http://iupac.org/reports/provisional/abstract04/Corish_pr111.pdf. Retrieved 2008-03-02. 
  11. ^ Corish et al.; Rosenblatt, G. M. (2004). "Name and symbol of the element with atomic number 111". Pure Appl. Chem. 76 (12): 2101–2103. DOI:10.1351/pac200476122101. http://iupac.org/publications/pac/2004/pdf/7612x2101.pdf. 
  12. ^ "Three new elements approved", Institute of Physics website, retrieved 4 Nov 2011
  13. ^ Chatt, J. (1979). "Recommendations for the Naming of Elements of Atomic Numbers Greater than 100". Pure Appl. Chem. (International Union of Pure and Applied Chemistry) 51: 381–384. http://www.iupac.org/publications/pac/pdf/1979/pdf/5102x0381.pdf. Retrieved February 19, 2012. 
  14. ^ Morita, K; Morimoto, K; Kaji, D; Goto, S; Haba, H; Ideguchi, E; Kanungo, R; Katori, K et al. (2004). "Status of heavy element research using GARIS at RIKEN". Nuclear Physics A 734: 101. DOI:10.1016/j.nuclphysa.2004.01.019. 
  15. ^ Folden, C. M. (2004). "Development of an Odd-Z-Projectile Reaction for Heavy Element Synthesis: ^{208}Pb(^{64}Ni,n)^{271}Ds and ^{208}Pb(^{65}Cu,n)^{272}111". Physical Review Letters 93 (21): 212702. Bibcode 2004PhRvL..93u2702F. DOI:10.1103/PhysRevLett.93.212702. PMID 15601003. 
  16. ^ "Development of an Odd-Z-Projectile Reaction for Heavy Element Synthesis: 208Pb(64Ni,n)271Ds and 208Pb(65Cu,n)272111", Folden et al., LBNL repositories. Retrieved on 2008-03-02
  17. ^ a b c d see ununpentium for details
  18. ^ a b c d see ununtrium for details
  19. ^ Turler, A. (2004). "Gas Phase Chemistry of Superheavy Elements". Journal of Nuclear and Radiochemical Sciences 5 (2): R19–R25. http://wwwsoc.nii.ac.jp/jnrs/paper/JN52/j052Turler.pdf. 

  External links

   
               

 

Toutes les traductions de Roentgenium


Contenu de sensagent

  • définitions
  • synonymes
  • antonymes
  • encyclopédie

dictionnaire et traducteur pour sites web

Alexandria

Une fenêtre (pop-into) d'information (contenu principal de Sensagent) est invoquée un double-clic sur n'importe quel mot de votre page web. LA fenêtre fournit des explications et des traductions contextuelles, c'est-à-dire sans obliger votre visiteur à quitter votre page web !

Essayer ici, télécharger le code;

SensagentBox

Avec la boîte de recherches Sensagent, les visiteurs de votre site peuvent également accéder à une information de référence pertinente parmi plus de 5 millions de pages web indexées sur Sensagent.com. Vous pouvez Choisir la taille qui convient le mieux à votre site et adapter la charte graphique.

Solution commerce électronique

Augmenter le contenu de votre site

Ajouter de nouveaux contenus Add à votre site depuis Sensagent par XML.

Parcourir les produits et les annonces

Obtenir des informations en XML pour filtrer le meilleur contenu.

Indexer des images et définir des méta-données

Fixer la signification de chaque méta-donnée (multilingue).


Renseignements suite à un email de description de votre projet.

Jeux de lettres

Les jeux de lettre français sont :
○   Anagrammes
○   jokers, mots-croisés
○   Lettris
○   Boggle.

Lettris

Lettris est un jeu de lettres gravitationnelles proche de Tetris. Chaque lettre qui apparaît descend ; il faut placer les lettres de telle manière que des mots se forment (gauche, droit, haut et bas) et que de la place soit libérée.

boggle

Il s'agit en 3 minutes de trouver le plus grand nombre de mots possibles de trois lettres et plus dans une grille de 16 lettres. Il est aussi possible de jouer avec la grille de 25 cases. Les lettres doivent être adjacentes et les mots les plus longs sont les meilleurs. Participer au concours et enregistrer votre nom dans la liste de meilleurs joueurs ! Jouer

Dictionnaire de la langue française
Principales Références

La plupart des définitions du français sont proposées par SenseGates et comportent un approfondissement avec Littré et plusieurs auteurs techniques spécialisés.
Le dictionnaire des synonymes est surtout dérivé du dictionnaire intégral (TID).
L'encyclopédie française bénéficie de la licence Wikipedia (GNU).

Copyright

Les jeux de lettres anagramme, mot-croisé, joker, Lettris et Boggle sont proposés par Memodata.
Le service web Alexandria est motorisé par Memodata pour faciliter les recherches sur Ebay.
La SensagentBox est offerte par sensAgent.

Traduction

Changer la langue cible pour obtenir des traductions.
Astuce: parcourir les champs sémantiques du dictionnaire analogique en plusieurs langues pour mieux apprendre avec sensagent.

 

5064 visiteurs en ligne

calculé en 0,047s


Je voudrais signaler :
section :
une faute d'orthographe ou de grammaire
un contenu abusif (raciste, pornographique, diffamatoire)
une violation de copyright
une erreur
un manque
autre
merci de préciser :