Mon compte

connexion

inscription

   Publicité E▼


 » 
allemand anglais arabe bulgare chinois coréen croate danois espagnol espéranto estonien finnois français grec hébreu hindi hongrois islandais indonésien italien japonais letton lituanien malgache néerlandais norvégien persan polonais portugais roumain russe serbe slovaque slovène suédois tchèque thai turc vietnamien
allemand anglais arabe bulgare chinois coréen croate danois espagnol espéranto estonien finnois français grec hébreu hindi hongrois islandais indonésien italien japonais letton lituanien malgache néerlandais norvégien persan polonais portugais roumain russe serbe slovaque slovène suédois tchèque thai turc vietnamien

Significations et usages de Schaltkreis

Définition

⇨ voir la définition de Wikipedia

   Publicité ▼

Synonymes

schelten (v.)

abkanzeln, abkapiteln, anblaffen, anblasen, anblöken, anbrüllen, aneinandergeraten, aneinander geraten, anfahren, anfauchen, angreifen, anherrschen, anknurren, anlegen, anpfeifen, anschnauben, anschnauzen, anschreien, anzischen, attackieren, ausschelten, ausschimpfen, auszanken, bellen, bemäkeln, beschimpfen, den Kopf waschen, donnern, einen Verweis erteilen, ermahnen, fluchen, heruntermachen, ins Gebet nehmen, jemanden fertigmachen, jemanden fertig machen, maßregeln, rügen, schimpfen, schnauzen, stauchen, tadeln, zanken, zurechtweisen, zusammenstauchen, eine Lehre erteilen  (abjagen, abkaufen, münden in, reichen, verdanken, zusprechen), eine Lehre geben  (abjagen, abkaufen, münden in, reichen, verdanken, zusprechen), einen Denkzettel verpassen  (abjagen, abkaufen, münden in, reichen, verdanken, zusprechen), einen Rüffel erteilen  (abjagen, abkaufen, münden in, reichen, verdanken, zusprechen), eine Standpauke halten  (abjagen, abkaufen, münden in, reichen, verdanken, zusprechen), rüffeln  (abjagen, abkaufen, münden in, reichen, verdanken, zusprechen), schimpfen mit  (abjagen, abkaufen, münden in, reichen, verdanken, zusprechen), unter die Nase reiben  (Gesprächs.), vorknöpfen  (Gesprächs.)

schelten (v. intr.)

schimpfen

schelten (v. trans.)

anprangern, beanstanden, Kritik ausüben, kritisieren, monieren, rezensieren, zerpflücken, zurechtweisen, Kritik haben an  (abjagen, abkaufen, münden in, reichen, verdanken, zusprechen), Kritik üben an  (abjagen, abkaufen, münden in, reichen, verdanken, zusprechen), verweisen  (abjagen, abkaufen, münden in, reichen, verdanken, zusprechen), vorhalten  (abjagen, abkaufen, münden in, reichen, verdanken, zusprechen)

Voir aussi

   Publicité ▼

Locutions

Alvaschein (Kreis) • Autonomer Kreis • Autonomer Kreis Taimyr • Autonomer Kreis der Aginer Burjaten • Autonomer Kreis der Chanten und Mansen • Autonomer Kreis der Ewenken • Autonomer Kreis der Jamal-Nenzen • Autonomer Kreis der Komi-Permjaken • Autonomer Kreis der Korjaken • Autonomer Kreis der Nenzen • Autonomer Kreis der Tschuktschen • Autonomer Kreis der Ust-Ordynsker Burjaten • Bahnen im unteren Kreis Solingen • Bundestagswahlkreis Rhein-Sieg-Kreis I • Bundestagswahlkreis Rhein-Sieg-Kreis II • Bunter Kreis • Burg Liebenstein (Ilm-Kreis) • Der Kreis (2000) • Der Kreis (Kulturzeitschrift) • Ennepe-Ruhr-Kreis • Henndorfer Kreis • Im inneren Kreis • Japanischer Satz für in einen Kreis einbeschriebene Polygone • Johnson-Kreis • Kreis 1 • Kreis 2 • Kreis 4 • Kreis Aachen • Kreis Alba • Kreis Arad • Kreis Argeş • Kreis Arnsberg • Kreis Bacău • Kreis Bad Freienwalde • Kreis Bad Salzungen • Kreis Bautzen • Kreis Bergstraße • Kreis Bihor • Kreis Birnbaum • Kreis Bistriţa-Năsăud • Kreis Blankenheim • Kreis Borken • Kreis Botoşani • Kreis Brașov • Kreis Brilon • Kreis Brăila • Kreis Burg • Kreis Buzău • Kreis Büren • Kreis Caraş-Severin • Kreis Cluj • Kreis Constanţa • Kreis Covasna • Kreis Călăraşi • Kreis Dithmarschen • Kreis Dolj • Kreis Dâmboviţa • Kreis Düren • Kreis Euskirchen • Kreis Finsterwalde • Kreis Frankfurt (Oder) • Kreis Galaţi • Kreis Genthin • Kreis Giurgiu • Kreis Gorj • Kreis Gostyn • Kreis Großenhain • Kreis Gummersbach • Kreis Görlitz • Kreis Gütersloh • Kreis Halle • Kreis Harghita • Kreis Heinsberg • Kreis Herford • Kreis Hohensalza • Kreis Hunedoara • Kreis Höxter • Kreis Ialomiţa • Kreis Iaşi • Kreis Iserlohn • Kreis Jarotschin • Kreis Jork • Kreis Jülich • Kreis Kehdingen • Kreis Kempen in Posen • Kreis Kleve • Kreis Koschmin • Kreis Krotoschin • Kreis Kröben • Kreis Lennep • Kreis Lippe • Kreis Lippstadt • Kreis Löbau • Kreis Lübbecke • Kreis Lüdenscheid • Kreis Lüdinghausen • Kreis Maramureş • Kreis Mehedinţi • Kreis Meschede • Kreis Mettmann • Kreis Minden-Lübbecke • Kreis Monschau • Kreis Mureş • Kreis Neamţ • Kreis Niederung • Kreis Obornik • Kreis Olpe • Kreis Olt • Kreis Ostholstein • Kreis Paderborn • Kreis Pinneberg • Kreis Pirna • Kreis Pleschen • Kreis Posen • Kreis Posen-Ost • Kreis Posen-West • Kreis Prahova • Kreis Rawitsch • Kreis Recklinghausen • Kreis Rochlitz • Kreis Ruhrorter Straßenbahn • Kreis Saarburg • Kreis Satu Mare • Kreis Schildberg • Kreis Schrimm • Kreis Schroda • Kreis Schubin • Kreis Seelow • Kreis Sibiu • Kreis Siegen • Kreis Siegen-Wittgenstein • Kreis Soest • Kreis Steinfurt • Kreis Strausberg • Kreis Suceava • Kreis Sălaj • Kreis Tecklenburg • Kreis Teleorman • Kreis Timiş • Kreis Tulcea • Kreis Unna • Kreis Vaslui • Kreis Viersen • Kreis Vrancea • Kreis Vâlcea • Kreis Waldbröl • Kreis Warburg • Kreis Warendorf • Kreis Wesel • Kreis Wiedenbrück • Kreis Wittgenstein • Kreis Wreschen • Kreis Wurzen • Kreis Zeulenroda • Kreis Znin • Kreis- und Stadtbücherei Gummersbach • Kreis-Anzeiger • Kreisauer Kreis • Kronberger Kreis (evangelisch) • Lahn-Dill-Kreis • Langenberg (Kreis Gütersloh) • Liste der Flaggen im Kreis Paderborn • Main-Kinzig-Kreis • Main-Tauber-Kreis • Main-Taunus-Kreis • Mrs. Parker und ihr lasterhafter Kreis • Märkischer Kreis • Naumann-Kreis • Neckar-Odenwald-Kreis • Nötscher Kreis • Oberbergischer Kreis • Osterby (Kreis Rendsburg-Eckernförde) • Petersberg (Saale-Holzland-Kreis) • Rems-Murr-Kreis • Rhein-Erft-Kreis • Rhein-Kreis Neuss • Rhein-Neckar-Kreis • Rhein-Sieg-Kreis • Rhein-Wupper-Kreis • Rheingau-Taunus-Kreis • Rheinisch-Bergischer Kreis • Roth (Rhein-Hunsrück-Kreis) • Roth (Rhein-Lahn-Kreis) • Saarpfalz-Kreis • Schenefeld (Kreis Steinburg) • Schwalm-Eder-Kreis • Schwarzwald-Baar-Kreis • Schönfelder Kreis • Seedorf (Kreis Segeberg) • Tillich-Kreis • Unstrut-Hainich-Kreis • Urbar (Rhein-Hunsrück-Kreis) • Warder (Kreis Segeberg) • Weisel (Rhein-Lahn-Kreis) • Weißer Kreis • Weißer Kreis (Burschenschaft) • Werra-Meißner-Kreis • Wiener Kreis • Wilhelm Kreis

Dictionnaire analogique



Kreis (n.)






Kreis. (adj.)

zyklisch[Similaire]




schelten (v. intr.)



Wikipedia

Kreis

                   
Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen sind unter Kreis (Begriffsklärung) aufgeführt.
  Kreis mit Mittelpunkt M und Radius r

Ein Kreis ist definiert als Menge aller Punkte auf einer Ebene, deren Abstand von einem vorgegebenen Punkt dieser Ebene konstant ist. Der vorgegebene Punkt heißt Mittelpunkt des Kreises. Der Abstand der Kreispunkte zum Mittelpunkt ist der Radius oder Halbmesser des Kreises, er ist eine positive reelle Zahl. Der Begriff Kreis gehört zu den wichtigsten Begriffen der euklidischen Geometrie.

Schon die alten Ägypter und Babylonier versuchten, den Flächeninhalt des Kreises näherungsweise zu bestimmen. Besonders in der griechischen Antike war der Kreis wegen seiner Vollkommenheit von großem Interesse. Beispielsweise versuchte Archimedes erfolglos, mit den Werkzeugen Zirkel und Lineal den Kreis in ein Quadrat mit gleichem Flächeninhalt zu überführen, um so den Flächeninhalt des Kreises bestimmen zu können. Ein solches Verfahren zur Berechnung des Flächeninhalts nennt man die Quadratur des Kreises. Erst 1882 konnte Ferdinand von Lindemann durch Nachweis einer besonderen Eigenschaft der Kreiszahl zeigen, dass diese Aufgabe unlösbar ist.

Inhaltsverzeichnis

  Worterklärungen

  Kreisflächen

Nach dieser Definition ist ein Kreis eine Kurve, also ein eindimensionales Gebilde, und keine zweidimensionale Fläche. Da das Wort „Kreis“ aber oft ungenau auch für die eingeschlossene Fläche benutzt wird, verwendet man zur Verdeutlichung häufig die Begriffe Kreislinie, Kreisrand oder Kreisperipherie [1] anstatt Kreis – im Gegensatz zur Kreisfläche oder Kreisscheibe. Mathematiker unterscheiden dann noch zwischen der abgeschlossenen Kreisfläche oder -scheibe und der offenen (oder dem Kreisinneren), je nachdem ob die Kreislinie dazugehört oder nicht.

  Bogen, Sehne, Sektor und Segment

  Kreisbogen, Kreissektor und Kreissegment

Eine zusammenhängende Teilmenge des Kreises (also der Kreislinie) ist ein Kreisbogen. Eine Verbindungsstrecke zweier Punkte der Kreislinie bezeichnet man als Kreissehne. Zu jeder Sehne gehören zwei Kreisbogen (im Allgemeinen ein kürzerer und ein längerer). Die längsten Kreissehnen sind diejenigen, die durch den Mittelpunkt verlaufen, also die Durchmesser. Die zugehörigen Kreisbogen heißen Halbkreise.

Ein Kreissektor (Kreisausschnitt) ist eine Fläche, die von zwei Radien und einem dazwischen liegenden Kreisbogen begrenzt wird. Bilden die zwei Radien einen Durchmesser, so werden auch die Sektoren oft als Halbkreise bezeichnet.

Kreissegmente (Kreisabschnitte) werden von einem Kreisbogen und einer Kreissehne eingeschlossen.

  Tangente, Passante und Sekante

Für die Lage einer Geraden in Bezug auf einen gegebenen Kreis gibt es drei Möglichkeiten:

  Beziehung von Kreis zu Tangente, Passante und Sekante
  • Ist der Abstand zwischen Mittelpunkt und Gerade kleiner als der Kreisradius, so haben Kreis und Gerade zwei (verschiedene) Schnittpunkte und man nennt die Gerade Sekante (lateinisch secare = schneiden). Manchmal bezeichnet man den Spezialfall einer Sekante, die durch den Mittelpunkt eines Kreises verläuft, als Zentrale.
  • Stimmt der Abstand des Mittelpunkts zu der Geraden mit dem Radius überein, so gibt es genau einen gemeinsamen Punkt. Man sagt, dass die Gerade den Kreis berührt, und nennt die Gerade eine Tangente (lateinisch tangere = berühren). Eine Tangente steht im Berührpunkt senkrecht (orthogonal, normal) zum entsprechenden Radius.
  • Falls der Abstand des Kreismittelpunkts von der Geraden größer ist als der Kreisradius, dann haben Kreis und Gerade keinen Punkt gemeinsam. In diesem Fall bezeichnet man die Gerade als Passante. Diese Bezeichnung hat keinen unmittelbaren lateinischen Ursprung, sondern wurde wohl nach franz. oder ital. passante = Vorbeigehende gebildet. Die lat. Wurzel ist passus = Schritt.

  Formale Definition

  Ein Kreis mit Mittelpunkt M, Radius r und Durchmesser d.

In einer Ebene E ist ein Kreis k mit Mittelpunkt \mathrm{M} \in E und Radius r > 0 die Punktmenge

k = \left\{\mathrm{X} \in E ~ \vert ~ \overline{\mathrm{MX}} = r \right\}.[2]

Dabei ist der Radius r eine positive reelle Zahl, und \overline{\mathrm{MX}} bezeichnet die Länge der Strecke [\mathrm{MX}].

Der doppelte Radius heißt Durchmesser und wird oft mit d bezeichnet. Radius r und Durchmesser d sind durch die Beziehungen d = 2r oder r = d/2 miteinander verknüpft.

Andererseits wird aber auch jede Strecke, die den Mittelpunkt mit einem Punkt auf der Kreislinie verbindet, als Radius bezeichnet, und jede Strecke, die durch den Mittelpunkt geht, und deren beide Endpunkte auf der Kreislinie liegen, als Durchmesser. Bei dieser Sprechweise ist die Zahl r die Länge jedes Radius und die Zahl d die Länge jedes Durchmessers.

Die offene Kreisfläche ist formal definiert als die Punktmenge

k = \left\{\mathrm{X} \in E ~ \vert ~ \overline{\mathrm{MX}} < r \right\},

die abgeschlossene Kreisscheibe als

k = \left\{\mathrm{X} \in E ~ \vert ~ \overline{\mathrm{MX}} \le r \right\}.

  Geschichte

  In der Technik ermöglicht die kreisrunde Form des Rades die rollende Fortbewegung.

  Zeit der Ägypter und Babylonier

  Fragment des Papyrus Rhind
  Annäherung der Kreisfläche im Papyrus Rhind, die Figur oben wird als unregelmäßiges Achteck gedeutet, darunter die Rechenschritte am Beispiel d=9 (Chet).

Der Kreis gehört neben dem Punkt und der geraden Linie zu den ältesten Elementen der vorgriechischen Geometrie.[3] Schon zweitausend Jahre vor Christus beschäftigten sich die Ägypter mit ihm in ihren Studien zur Geometrie. Sie konnten den Flächeninhalt A eines Kreises näherungsweise bestimmen, indem sie vom Durchmesser d ein Neuntel seiner Länge abzogen und das Ergebnis mit sich selbst multiplizierten. Sie rechneten also

A \approx \left(\frac{8}{9} d \right)^2 = \frac{256}{81} r^2 = 3{,}16049\dotso\cdot r^2

und bestimmten so näherungsweise (mit einer Abweichung von nur etwa +0,6 %) den Flächeninhalt einer Kreisfläche. Diese Näherung wurde in der altägyptischen Abhandlung Papyrus Rhind gefunden, sie lässt sich erhalten, wenn man den Kreis durch ein unregelmäßiges Achteck annähert.[4]

Die Babylonier (1900 bis 1600 vor Christus) benutzten eine ganz andere Methode, um den Flächeninhalt der Kreisscheibe zu berechnen. Im Gegensatz zu den Ägyptern gingen sie vom Kreisumfang U aus, den sie als dreimal den Kreisdurchmesser d schätzten. Der Flächeninhalt wurde dann auf ein Zwölftel des Quadrates des Umfanges geschätzt, also[5]

A \approx \frac{1}{12} U^2 \approx \frac{9}{12} d^2 = 3 r^2, mit einer Abweichung von –4,5 % ein deutlich schlechteres Ergebnis.

Die Babylonier beschäftigten sich aber auch schon mit Kreissegmenten. Sie konnten die Länge der Sehne oder die Höhe des Kreissegments (die senkrecht auf der Sehnenmitte stehende Strecke zwischen Sehne und Umfang) berechnen. Damit begründeten sie die Sehnengeometrie, die später von Hipparch weiterentwickelt wurde und die Claudius Ptolemaios an den Anfang seines astronomischen Lehrbuches Almagest stellte.[6]

  Antike

  Titelblatt von Henry Billingsleys englischer Übersetzung der Elemente (1570)

Die Griechen werden meist als die Begründer der Wissenschaft von der Natur angesehen. Als der erste bedeutende Philosoph dieser Zeit, der sich mit Mathematik beschäftigte, gilt Thales von Milet (624–546 v. Chr.). Er brachte Wissen über die Geometrie aus Ägypten mit nach Griechenland, wie zum Beispiel die Aussage, dass der Durchmesser den Kreis halbiert. Andere Aussagen zur Geometrie wurden von Thales selbst aufgestellt. Der heute nach Thales benannte Satz besagt, dass Peripheriewinkel im Halbkreis rechte Winkel sind. Insbesondere war Thales der erste, bei dem der Begriff des Winkels auftrat.[7]

Die erste bekannte Definition des Kreises geht auf den griechischen Philosophen Platon (428/427–348/347 v. Chr.) zurück, die er in seinem Dialog Parmenides formulierte:

„Rund ist doch wohl das, dessen äußerste Teile überall vom Mittelpunkt aus gleich weit entfernt sind.“

Platon: Parmenides[8]

Zirka 300 Jahre vor Christus lebte der griechische Mathematiker Euklid von Alexandria. Über ihn selbst ist wenig bekannt, aber sein Werk im Bereich der Geometrie war beachtlich. Sein Name ist heute noch in Zusammenhängen wie euklidischer Raum, euklidische Geometrie oder euklidische Metrik in Gebrauch. Sein wichtigstes Werk waren Die Elemente, eine dreizehnbändige Abhandlung, in der er die Arithmetik und Geometrie seiner Zeit zusammenfasste und systematisierte. Er folgerte die mathematischen Aussagen aus Postulaten und begründete damit die euklidische Geometrie. Der dritte Band der Elemente beschäftigte sich mit der Lehre über den Kreis.[9]

Von Archimedes, der vermutlich zwischen 287 v. Chr. und 212 v. Chr. auf Sizilien lebte, ist eine ausführliche Abhandlung mit dem Titel Kreismessung überliefert.[10] Er bewies in dieser Arbeit, dass der Flächeninhalt eines Kreises gleich dem Flächeninhalt eines rechtwinkligen Dreiecks mit dem Kreisradius als der einen und dem Kreisumfang als der anderen Kathete ist. Der Flächeninhalt des Kreises lässt sich also als ½ · Radius · Umfang angeben. Mit dieser Erkenntnis führte er das Problem der Quadratur des Kreises auf die Frage der Konstruierbarkeit des Umfangs aus dem vorgegebenen Radius zurück. In seiner Abhandlung Kreismessung konnte Archimedes ebenfalls zeigen, dass der Umfang eines Kreises größer als 310/71 und kleiner als 31/7 des Durchmessers ist. Für praktische Zwecke wird diese Näherung 22/7 (~3.143) heute noch verwendet. Aus diesen beiden Aussagen folgert man, dass sich der Flächeninhalt eines Kreises zum Quadrat seines Durchmessers nahezu wie 11/14 verhält. Euklid war bereits bekannt, dass sich der Flächeninhalt eines Kreises proportional zum Quadrat seines Durchmessers verhält.[11] Archimedes gibt hier eine gute Näherung der Proportionalitätskonstante an.

In einer weiteren Arbeit Über Spiralen[10] beschreibt Archimedes die Konstruktion der später nach ihm benannten archimedischen Spirale. Mit dieser Konstruktion war es Archimedes möglich, den Umfang eines Kreises auf einer Geraden abzutragen. Auf diese Weise konnte nun der Flächeninhalt eines Kreises exakt bestimmt werden. Jedoch kann diese Spirale nicht mit Zirkel und Lineal konstruiert werden.[12]

Apollonios von Perge lebte zirka 200 Jahre vor Christus. In seiner Kegelschnittlehre Konika fasste er unter anderem die Ellipse und den Kreis als Schnitte eines geraden Kreiskegels auf – genauso wie es heute noch in der algebraischen Geometrie definiert wird. Seine Erkenntnisse gehen auf seine Vorgänger Euklid und Aristaios (um 330 v. Chr.) zurück, deren verfasste Abhandlungen über Kegelschnitte jedoch nicht mehr überliefert sind.[13]

Nach Apollonios ist weiterhin das apollonische Problem benannt, zu drei gegebenen Kreisen mit den euklidischen Werkzeugen Lineal und Zirkel die Kreise zu konstruieren, die die gegebenen berühren. Jedoch im Vergleich zu Euklids Elementen, die auch im Mittelalter die Grundlage der Geometrie bildeten, fanden die Werke von Apollonios zunächst nur im islamischen Bereich Beachtung. In Westeuropa erlangten seine Bücher erst im 17. Jahrhundert größere Bedeutung, als Johannes Kepler die Ellipse als die wahre Bahn eines Planeten um die Sonne erkannte.[14]

  Renaissance

In der Wissenschaftsgeschichte nennt man den Zeitraum zwischen 1400 n. Chr. und 1630 n. Chr. üblicherweise Renaissance, auch wenn der zeitliche Abschnitt nicht mit der Periodisierung etwa der Kunstgeschichte übereinstimmt. In dieser Zeit fanden Euklids Elemente wieder mehr Beachtung. Sie gehörten zu den ersten gedruckten Büchern und wurden in den darauffolgenden Jahrhunderten in vielen verschiedenen Ausgaben verlegt. Erhard Ratdolt stellte 1482 in Venedig die erste gedruckte Ausgabe der Elemente her. Eine der bedeutendsten Ausgaben von Euklids Elementen wurde von dem Jesuiten Christoph Clavius herausgegeben. Er fügte den eigentlichen Texten Euklids neben den spätantiken Büchern XIV und XV noch ein sechzehntes Buch und weitere umfangreiche Ergänzungen hinzu. Beispielsweise ergänzte er eine Konstruktion der gemeinsamen Tangenten zweier Kreise.[15]

  19. Jahrhundert

  Ferdinand von Lindemann

Nach Vorleistungen von Leonard Euler, der die eulersche Identität aufstellte, Johann Heinrich Lambert und Charles Hermite konnte Ferdinand von Lindemann 1882 beweisen, dass die Zahl π transzendent ist. Das heißt, es gibt keine Polynomfunktion mit rationalen Koeffizienten, für die π eine Nullstelle ist. Da jedoch schon im 17. Jahrhundert gezeigt wurde, dass die Kreiszahl π eine Nullstelle einer solchen Polynomfunktion sein müsse, damit die Quadratur des Kreises mit Zirkel und Lineal funktioniere, wurde somit zugleich bewiesen, dass es kein solches Verfahren geben kann.[16]

  Gleichungen

In der analytischen Geometrie werden geometrische Objekte mit Hilfe von Gleichungen beschrieben. Punkte in der Ebene werden dazu meist durch ihre kartesischen Koordinaten (x,y) dargestellt und ein Kreis ist dann die Menge aller Punkte, deren Koordinaten die jeweilige Gleichung erfüllen.

  Koordinatengleichung

Der euklidische Abstand eines Punktes \mathrm{X} = (x,y) vom Punkt \mathrm{M} = (x_M,y_M) berechnet sich als

\overline{\rm XM} = \sqrt{(x-x_M)^2+(y-y_M)^2}.

Durch Quadrieren der definierenden Gleichung \overline{\rm XM} = r ergibt sich die Koordinatengleichung

\left(x-x_M\right)^2 + \left(y-y_M\right)^2 = r^2

für die Punkte (x,y) auf dem Kreis mit Mittelpunkt \mathrm{M} = (x_M,y_M) und Radius r. Ein wichtiger Spezialfall ist die Koordinatengleichung des Einheitskreises

x^2 + y^2 \,=\, 1.

  Funktionsgleichung

Da der Kreis kein Funktionsgraph ist, lässt er sich auch nicht durch eine Funktionsgleichung darstellen. Behelfsweise kann ein Paar von Funktionsgleichungen

y = y_M \pm \sqrt{r^2 - (x-x_M)^2}

verwendet werden. Für den Einheitskreis vereinfacht sich dieses zu

y = \pm \sqrt{1 - x^2}.

  Parameterdarstellung

Eine andere Möglichkeit, einen Kreis durch Koordinaten zu beschreiben, bietet die Parameterdarstellung (siehe auch Polarkoordinaten):

\begin{align}
 x &= x_M + r\cos\varphi\\
 y &= y_M + r\sin\varphi
\end{align}

Hier werden die Koordinaten x und y durch den Parameter \varphi ausgedrückt, der alle Werte mit 0 \le \varphi < 2 \pi annehmen kann.

Wendet man auch diese Gleichungen speziell auf den Einheitskreis an, so erhält man:

\begin{align}
 x &= \cos\varphi\\
 y &= \sin\varphi
\end{align}

  Komplexe Darstellung

In der komplexen Zahlenebene lässt sich der Kreis um m \in \C mit Radius r > 0 durch die Gleichung

|z-m|\,=\,r

darstellen. Mit Hilfe der komplexen Exponentialfunktion erhält man die Parameterdarstellung

z \,=\, m + r e^{i \varphi},\quad 0 \leq \varphi < 2\pi.

  Kreisberechnung

  Umfang des Kreises mit d = 1

  Kreiszahl

Hauptartikel: Kreiszahl

Da alle Kreise ähnlich sind, ist das Verhältnis von Kreisumfang und Kreisdurchmesser für alle Kreise konstant. Der Zahlenwert dieses Verhältnisses wird in der Elementargeometrie als Definition für die Kreiszahl \pi = 3{,}14159\dots verwendet. Es handelt sich hierbei um eine transzendente Zahl, bei der sich außerdem gezeigt hat, dass sie in vielen Bereichen der Höheren Mathematik eine herausragende Bedeutung besitzt.

  Umfang

Im Rahmen der Elementargeometrie ist \pi das Verhältnis von Kreisumfang U zu dessen Durchmesser d, und zwar für beliebige Kreise. Somit gilt

U = \pi \, d = 2 \pi \, r.

Mit r = \tfrac{1}{2} d ist der Radius des Kreises gemeint.

  Kreisfläche

  Darstellung einer Näherung für die Kreisfläche

Der Flächeninhalt der Kreisfläche A (lat. area: Fläche) ist proportional zum Quadrat des Radius r bzw. des Durchmessers d des Kreises. Man bezeichnet ihn auch als Kreisinhalt.

Um die Formel für den Kreisinhalt zu erhalten, sind Grenzwert-Betrachtungen unerlässlich. Recht anschaulich ergibt sich eine solche aus der nebenstehenden Zeichnung:

  Die Zeichnung verdeutlicht, dass der Flächeninhalt einer Kreisscheibe kleiner als 4r^2 sein muss.

Die Kreisfläche ist zerlegungsgleich mit der Fläche der rechten Figur. Diese nähert sich – bei feiner werdender Sektoreinteilung – einem Rechteck an mit der Länge \pi \, r und der Breite r. Die Flächenformel ist somit

A = \pi r^2 = \frac{\pi \, d^2}{4} \approx 0{,}78540 \; d^2.

Die Flächenformel kann zum Beispiel durch Integrieren der Kreisgleichung oder mit Hilfe der unten beschriebenen Annäherung durch regelmäßige Vielecke bewiesen werden.

  Durchmesser

Hauptartikel: Durchmesser

Der Durchmesser d eines Kreises mit Flächeninhalt A und mit Radius r lässt sich durch

d = 2r = 2 \sqrt{\frac A\pi} \approx 1{,}1284 \; \sqrt A

berechnen.

  Krümmung

Eine im Vergleich zu den bis jetzt beschriebenen Größen weniger elementare Eigenschaft des Kreises ist die Krümmung. Zur präzisen Definition der Krümmung werden Begriffe aus der Analysis benötigt, sie lässt sich jedoch aufgrund der Symmetrieeigenschaften des Kreises einfach berechnen. Anschaulich gibt die Krümmung in jedem Punkt P an, wie stark der Kreis in der unmittelbaren Umgebung des Punktes P von einer Geraden abweicht. Die Krümmung \kappa des Kreises im Punkt P lässt sich durch

\kappa(P) = \frac{1}{r}

berechnen, wobei r wieder der Radius des Kreises ist. Im Gegensatz zu anderen mathematischen Kurven hat der Kreis in jedem Punkt die gleiche Krümmung. Außer dem Kreis hat nur noch die Gerade eine konstante Krümmung \kappa = 0. Bei allen anderen Kurven ist die Krümmung vom Punkt P abhängig.

  Weitere Formeln

In den folgenden Formeln bezeichnet \alpha den Sektorwinkel im Bogenmaß. Bezeichnet \alpha' den Winkel im Gradmaß, so gilt die Umrechnung \alpha = \tfrac{\pi}{180^{\circ}} \alpha'.

Formeln zum Kreis
Fläche eines Kreisringes A = \pi (r_a^2-r_i^2)
Länge eines Kreisbogens L_B = r \alpha
Fläche Kreissektor A_\mathrm{SK} = \frac{r^2}{2} \alpha
Fläche eines Kreissegments A_\mathrm{SG} = \frac{r^2}{2} \cdot \left(\alpha-\sin\alpha\right)
Länge Kreissehne l_\mathrm{KS} = 2r \sin\frac \alpha 2
Höhe (Kreissegment) h = r-r \cos\frac \alpha 2

  Näherungen für den Flächeninhalt

Da die Kreiszahl \pi eine transzendente Zahl ist, gibt es kein Konstruktionsverfahren mit Zirkel und Lineal, mit dem man den Flächeninhalt exakt bestimmen kann. Außerdem sind transzendente Zahlen auch irrational, und daher hat \pi auch keine endliche Dezimalbruchentwicklung, weshalb der Kreisflächeninhalt bei rationalem Radius auch keine endliche Dezimalbruchentwicklung besitzt. Aus diesen Gründen wurden bis heute unterschiedliche Näherungsverfahren für den Flächeninhalt und somit auch den Umfang eines Kreises entwickelt. Manche der Näherungsverfahren, wie beispielsweise das im Abschnitt Annäherung durch Vielecke erläuterte Verfahren, können durch mehrfache Wiederholung ein beliebig genaues Ergebnis liefern. Könnten also solche Verfahren unendlich oft wiederholt werden, so würden sie das exakte Ergebnis liefern.

  Annäherung durch Quadrate

Ein Kreis mit Radius r wird mit einem Quadrat der Seitenlänge 2r umschrieben. Ihm wird weiter ein Quadrat mit der Diagonalen 2r einbeschrieben. Der Flächeninhalt des äußeren Quadrates ist 4r^2, der des inneren nach der Dreiecksflächenformel 2r^2 und der Mittelwert ist somit 3r^2. Mit dieser Näherung 3r^2 wird die Kreisfläche mit einem relativen Fehler kleiner als 5% genau bestimmt.

  Auszählen in einem Raster

Die Kreisfläche lässt sich annähernd bestimmen, indem man ihr viele kleine Quadrate unterlegt (z. B. mit Millimeterpapier). Zählt man alle Quadrate, die vollständig innerhalb des Kreises liegen, so erhält man einen etwas zu niedrigen Wert für die Fläche, zählt man auch alle Quadrate mit, die den Kreis lediglich schneiden, so ist der Wert zu groß. Der Mittelwert beider Ergebnisse ergibt eine Näherung für den Flächeninhalt des Kreises, deren Güte mit der Feinheit des Quadratrasters steigt.

  Annäherung durch Vielecke

  Annäherung an den Umkreis über ein Sechs- und ein Zwölfeck

Bei einer anderen Möglichkeit zur Kreisflächenbestimmung ist in den Kreis ein regelmäßiges Sechseck einzuzeichnen, dessen Ecken auf dem Kreis liegen. Werden nun die Seitenmitten vom Mittelpunkt aus auf den Kreis projiziert und diese neuen Punkte mit den alten Ecken verbunden, so entsteht ein regelmäßiges Zwölfeck. Wird dieser Vorgang wiederholt, entstehen nacheinander ein 24-Eck, ein 48-Eck und so fort.

In jedem Sechseck sind die Seiten gleich lang wie der Umkreisradius. Die Seiten der folgenden Vielecke ergeben sich mit Hilfe des Satzes von Pythagoras jeweils aus den Seiten der vorhergehenden. Aus den Seiten lassen sich die Flächen der Vielecke durch Dreiecksflächenberechnung exakt bestimmen. Sie sind alle etwas kleiner als die Kreisfläche, der sie sich bei steigender Eckenzahl jedoch annähern.

Entsprechend kann man mit einem Sechseck verfahren, das von außen an den Kreis gezeichnet ist, dessen Seitenmitten also auf ihm liegen. Man erhält eine fallende Folge von Flächenmaßen, deren Grenzwert wiederum die Kreisfläche ist.

  Geometrische Sätze und Begriffe rund um den Kreis

  Symmetrie und Abbildungseigenschaften

Der Kreis ist eine geometrische Figur von sehr hoher Symmetrie. Jede Gerade durch seinen Mittelpunkt ist eine Symmetrieachse. Zudem ist der Kreis rotationssymmetrisch, d. h., jede Drehung um den Mittelpunkt bildet den Kreis auf sich selbst ab. In der Gruppentheorie werden die genannten Symmetrieeigenschaften des Kreises durch seine Symmetriegruppe charakterisiert. Formal ergibt sich dafür die orthogonale Gruppe \mathrm O(2), das ist die Gruppe der orthogonalen 2 \times 2-Matrizen.

Alle Kreise mit dem gleichen Radius sind zueinander kongruent, lassen sich also durch Parallelverschiebungen aufeinander abbilden. Zwei beliebige Kreise sind zueinander ähnlich. Sie lassen sich stets durch eine zentrische Streckung und eine Parallelverschiebung aufeinander abbilden.

  Kreiswinkel und Winkelsätze

  Kreiswinkel: Der Umfangswinkel \gamma hängt nicht von der Lage der Punktes C auf dem Kreisbogen ab. Er ist halb so groß wie der Zentriwinkel \varphi und genauso groß wie der Sehnentangentenwinkel \delta.
  Halbkreis mit rechtwinkligen Dreiecken
Hauptartikel: Kreiswinkel und Satz von Thales

Eine Kreissehne mit Endpunkten A und B teilt einen gegebenen Kreis in zwei Kreisbögen. Ein Winkel \angle\rm ACB mit Scheitel C auf einem der Kreisbögen wird Umfangswinkel oder Peripheriewinkel genannt. Der Winkel \angle\rm AMB mit Scheitel im Mittelpunkt M heißt Mittelpunktswinkel oder Zentriwinkel.

Im Spezialfall, dass die Sehne den Mittelpunkt enthält, also ein Durchmesser des Kreises ist, ist der Mittelpunktswinkel ein gestreckter Winkel mit 180°. In dieser Situation gilt eine grundlegende Aussage der Kreisgeometrie, der Satz von Thales: Er besagt, dass Umfangswinkel über einem Durchmesser stets rechte Winkel sind, also 90° betragen. Der Kreis um das rechtwinklige Dreieck wird in dieser Situation auch Thaleskreis genannt.

Auch im Fall einer beliebigen Kreissehne sind alle Umfangswinkel, die auf dem gleichen Kreisbogen liegen, gleich groß. Diese Aussage wird auch Umfangswinkelsatz genannt. Der Kreisbogen, auf dem die Scheitel der Umfangswinkel liegen, heißt Fasskreisbogen. Liegen Umfangswinkel und Zentriwinkel auf der gleichen Seite der Sehne, dann ist der Zentriwinkel doppelt so groß wie der Umfangswinkel (Kreiswinkelsatz). Zwei Umfangswinkel, die auf gegenüberliegenden Seiten der Sehne liegen, ergänzen sich zu 180°.

Der Umfangswinkel ist genauso groß wie der spitze Sehnentangentenwinkel zwischen der Sehne und der durch einen ihrer Endpunkte verlaufenden Tangente (Sehnentangentenwinkelsatz).

  Sätze über Sehnen, Sekanten und Tangenten

Für Kreise gilt der Sehnensatz, der besagt: Schneiden zwei Sehnen [AC] und [BD] einander in einem Punkt S, so gilt

\overline{\rm AS} \cdot \overline{\rm CS} = \overline{\rm BS} \cdot \overline{\rm DS},

d. h., die Produkte der jeweiligen Sehnenabschnitte sind gleich.

Zwei Sehnen eines Kreises, die sich nicht schneiden, können verlängert werden zu Sekanten, die entweder parallel sind oder sich in einem Punkt S außerhalb der Kreises schneiden. Ist letzteres der Fall, so gilt analog zum Sehnensatz der Sekantensatz

\overline{\rm AS} \cdot \overline{\rm CS}= \overline{\rm BS} \cdot \overline{\rm DS}.

Im Fall einer Sekante, die den Kreis in den Punkte A und C schneidet, und einer Tangente, die den Kreis im Punkt B berührt, gilt der Sekanten-Tangenten-Satz: Ist S der Schnittpunkt von Sekante und Tangente, so folgt

\overline{\rm AS} \cdot \overline{\rm CS} = \overline{\rm BS}^2.

  Umkreise und Inkreise

Sind A, B, C drei Punkte, die nicht auf einer Geraden liegen, also ein nicht ausgeartetes Dreieck bilden, dann existiert ein eindeutig bestimmter Kreis durch diese Punkte, nämlich der Umkreis des Dreiecks ABC. Der Mittelpunkt des Umkreises ist der Schnittpunkt der drei Mittelsenkrechten des Dreiecks. Ebenso kann jedem Dreieck ein eindeutig bestimmter Kreis einbeschrieben werden, der die drei Seiten berührt, d. h., die Dreiecksseiten bilden Tangenten des Kreises. Dieser Kreis wird Inkreis des Dreiecks genannt. Sein Mittelpunkt ist der Schnittpunkt der drei Winkelhalbierenden.

In der Elementargeometrie werden noch weitere Kreise am Dreieck betrachtet: Die Ankreise liegen außerhalb des Dreiecks und berühren eine Seite und die Verlängerungen der beiden anderen Seiten. Ein weiterer interessanter Kreis am Dreieck ist der Feuerbachkreis, benannt nach Karl Wilhelm Feuerbach. Auf ihm liegen die drei Seitenmittelpunkte und die drei Fußpunkte der Höhen. Da auf ihm außerdem die drei Mittelpunkte der Strecken zwischen dem Höhenschnittpunkt und den Ecken des Dreiecks liegen, wird der Feuerbachkreis auch Neunpunktekreis genannt. Sein Mittelpunkt liegt wie der Schwerpunkt, der Umkreismittelpunkt und der Höhenschnittpunkt auf der eulerschen Geraden.

Im Gegensatz zu Dreiecken besitzen Polygone mit mehr als drei Ecken im Allgemeinen keinen Umkreis oder Inkreis. Für regelmäßige Vielecke existieren beide allerdings stets. Ein Viereck, das einen Umkreis besitzt, wird Sehnenviereck genannt. Ein konvexes Viereck ist genau dann ein Sehnenviereck, wenn sich gegenüberliegende Winkel zu 180° ergänzen. Ein Viereck, das einen Inkreis besitzt, wird Tangentenviereck genannt. Ein konvexes Viereck ist genau dann ein Tangentenviereck, wenn die Summe der Seitenlängen zweier gegenüberliegender Seiten gleich der Summe der beiden anderen Seitenlängen ist.

  Kreisspiegelungen und Möbiustransformationen

Die Kreisspiegelung, auch Inversion genannt, ist eine spezielle Abbildung der ebenen Geometrie, die eine „Spiegelung“ der euklidischen Ebene an einem gegebenen Kreis k mit Mittelpunkt \rm M und Radius r beschreibt. Ist \rm P \neq M ein gegebener Punkt, dann ist sein Bildpunkt \rm P' dadurch bestimmt, dass er auf der Halbgeraden [MP liegt und sein Abstand von \rm M die Gleichung

\overline{\rm MP} \cdot \overline{\rm MP'} = r^2

erfüllt. Die Kreisspiegelung bildet das Innere des gegebenen Kreises k auf sein Äußeres ab und umgekehrt. Alle Kreispunkte von k werden auf sich selbst abgebildet. Kreisspiegelungen sind winkeltreu, orientierungsumkehrend und kreistreu. Letzteres bedeutet, dass verallgemeinerte Kreise – das sind Kreise und Geraden – wieder auf verallgemeinerte Kreise abgebildet werden.

Die Hintereinanderausführung zweier Kreisspiegelungen ergibt eine Möbiustransformation. Möbiustransformationen – eine weitere wichtige Klassen von Abbildungen der Ebene – sind daher ebenfalls winkeltreu und kreistreu, allerdings orientierungserhaltend.

Kreisspiegelungen und Möbiustransformationen lassen sich besonders übersichtlich mit Hilfe komplexer Zahlen darstellen: Bei einer Kreisspiegelung eines Punktes z \in \C \setminus \{z_0\} an dem Kreis \{x \in \C: |x - z_0| = r \} lautet die Formel für den Bildpunkt w \in \C \setminus \{z_0\}

w = z_0 + \frac{r^2}{\bar z - \bar z_0}.

Für die Spiegelung am Einheitskreis gilt einfach w = 1/ \bar z.

Möbiustransformationen der komplexen Ebene werden durch gebrochen lineare Funktionen der Gestalt

w = \frac{a z + b}{c z + d}

mit a,b,c,d \in \C und ad \neq bc dargestellt.

Siehe auch: Potenz (Geometrie)

  Konstruktionen mit Zirkel und Lineal

  In der Geometrie schlägt man Kreise mittels eines Zirkels.

Ein klassisches Problem der Geometrie ist die Konstruktion geometrischer Objekte mit Zirkel und Lineal in endlich vielen Konstruktionsschritten aus einer gegebenen Punktemenge. In jedem Schritt dürfen dabei Geraden durch gegebene oder bereits konstruierte Punkte gezogen werden sowie Kreise um solche Punkte mit gegebenem oder bereits konstruiertem Radius gezogen werden. Die dadurch konstruierten Punkte ergeben sich als Schnittpunkte zweier Geraden, zweier Kreise oder einer Geraden mit einem Kreis. Naturgemäß spielen daher bei allen Konstruktionen mit Zirkel und Lineal Kreise eine wichtige Rolle.

Im Folgenden sollen exemplarisch einige Konstruktionen angesprochen werden, die im Zusammenhang mit der Geometrie von Kreisen von Bedeutung sind.

  Thaleskreis

Für die Konstruktion des Thaleskreises über einer gegebenen Strecke \rm [AB] wird zunächst der Mittelpunkt \mathrm{M} dieser Strecke konstruiert, der auch der Mittelpunkt des Thaleskreises ist. Dazu werden um \mathrm{A} und \mathrm{B} Kreise mit dem gleichen Radius r geschlagen, wobei r so groß gewählt werden muss, dass die beiden Kreise sich in zwei Punkten C und D schneiden. Das ist z. B. für r = \overline{\rm AB} der Fall. Die Gerade \rm CD schneidet dann \rm [AB] im Mittelpunkt \mathrm{M}. Der gesuchte Thaleskreis ist nun der Kreis mit Mittelpunkt \mathrm{M} und Radius \overline{\rm AM} = \overline{\rm MB}.

  Konstruktion von Tangenten

Gegeben sei ein Punkt \mathrm{P} außerhalb eines Kreises k mit Mittelpunkt \mathrm{M} und es sollen die beiden Tangenten an den Kreis konstruiert werden, die durch den Punkt \mathrm{P} laufen. Diese elementare Konstruktionsaufgabe lässt sich einfach mit Hilfe des Satzes von Thales lösen: Man konstruiert den Thaleskreis mit der Strecke \rm [PM] als Durchmesser. Die Schnittpunkte dieses Kreises mit k sind dann die Berührpunkte der gesuchten Tangenten.

  Flächenverdoppelung

  Die Fläche des roten Kreises ist doppelt so groß wie die Fläche des kleinen, blauen Kreises.

Die Fläche eines Kreises lässt sich geometrisch verdoppeln, indem ein Quadrat gezeichnet wird, dessen eine Ecke im Kreismittelpunkt liegt, wobei zwei weitere Ecken auf dem Kreisbogen liegen. Durch die vierte Ecke wird ein Kreis um den alten Mittelpunkt gezogen. Dieses Verfahren wurde im 13. Jahrhundert im Bauhüttenbuch des Villard de Honnecourt dargestellt. Dieses Verfahren funktioniert, da (nach dem Satz des Pythagoras)

R^2 = r^2+r^2 = 2 r^2 \!

und damit der Flächeninhalt des großen Kreises

\pi R^2 = 2 \pi r^2 \!

genau doppelt so groß ist, wie der des kleinen Kreises.

  Kreisteilung

Hauptartikel: Kreisteilung

Ein weiteres bereits in der Antike untersuchtes Konstruktionsproblem ist die Kreisteilung. Hierbei soll zu einer gegebenen natürlichen Zahl n einem gegebenen Kreis ein regelmäßiges n-Eck einbeschrieben werden. Die auf dem Kreis gelegenen Eckpunkte teilen diesen dann in n gleich lange Kreisbögen. Diese Konstruktion ist nicht für alle n möglich: Mit Hilfe der algebraischen Theorie der Körpererweiterungen lässt sich zeigen, dass sie genau dann durchführbar ist, wenn n eine Primfaktorzerlegung der Form

n \, = \, 2^k \cdot p_1 \dotsm p_m

hat mit k \in \N_0 und paarweise verschiedenen fermatsche Primzahlen p_1,\dots,p_m, also Primzahlen der Form 2^{2^r}+1. Damit ist die Konstruktion also beispielsweise für n = 3,4,5,6,8,10,12,15,16,17 möglich, jedoch nicht für z. B. n=7,9,11,13,14. Die Konstruktion des regelmäßigen Siebzehnecks gelang Carl Friedrich Gauß im Jahr 1796.

  Kreisberechnung in der Analysis

In der modernen Analysis werden die trigonometrischen Funktionen und die Kreiszahl \pi üblicherweise zunächst ohne Rückgriff auf die elementargeometrische Anschauung und auf spezielle Eigenschaften des Kreises definiert. So lassen sich etwa Sinus und Kosinus über ihre Darstellung als Potenzreihe definieren. Eine gängige Definition für den Wert von \pi ist dann das Doppelte der kleinsten positiven Nullstelle des Kosinus.

  Der Kreis als Kurve

In der Differentialgeometrie, einem Teilgebiet der Analysis, das geometrische Formen mit Hilfe der Differential- und Integralrechnung untersucht, werden Kreise als spezielle Kurven angesehen. Diese Kurven lassen sich mit Hilfe der oben genannten Parameterdarstellung als Weg beschreiben. Legt man den Koordinatenursprung in den Mittelpunkt eines Kreises mit Radius r, dann ist durch die Funktion f \colon [0, 2\pi] \to \R^2 mit

f(t) = \begin{pmatrix} r \cos t \\ r \sin t \end{pmatrix}

eine solche Parametrisierung gegeben. Mit Hilfe der trigonometrischen Formel \sin^2 t + \cos^2 t = 1 folgt für die euklidische Norm der parametrisierten Punkte |f(t)| = r, das heißt, sie liegen tatsächlich auf einem Kreis mit Radius r. Da Sinus und Kosinus 2\pi-periodische Funktionen sind, entspricht das Definitionsintervall [0,2\pi] von f genau einem Kreisumlauf.

  Kreisumfang

Der Umfang des Kreises ergibt sich als Länge des Weges f durch Integration zu

U = L(f) = \int_0^{2\pi} |f'(t)| \, dt = \int_0^{2\pi} \left|\begin{pmatrix} -r \sin t \\ r \cos t \end{pmatrix}\right| \,dt = \int_0^{2\pi} \sqrt{r^2 \sin^2 t + r^2\cos^2 t} \, dt = r \int_0^{2\pi} 1 \, dt = 2 \pi r.

Analog gilt für die Länge s(t) des durch f|_{[0,t]} gegebenen Teilkreisbogens s(t) = r t. Dadurch erhält man als Parametrisierung des Kreises nach der Bogenlänge

\hat f(s) = \begin{pmatrix} r \cos (s/r) \\ r \sin(s/r)\end{pmatrix}

mit s \in [0,2\pi r].

  Flächeninhalt

Der Flächeninhalt A der Kreisscheibe K = \{(x,y) \in \R^2: x^2 + y^2 \leq r^2\}, also das Maß der Menge K, kann als (zweidimensionales) Integral

A = \int_K 1 \, d(x,y)

dargestellt werden. Um die etwas mühsame Berechnung dieses Integrals in kartesischen Koordinaten zu umgehen, ist es günstig, eine Transformation x = \rho\cos\varphi, y = \rho\sin\varphi auf Polarkoordinaten zu verwenden. Damit ergibt sich

A = \int_0^{2\pi} \int_0^r \rho \, d\rho \, d\varphi = \int_0^r \rho \, d\rho \cdot \int_0^{2\pi} d\varphi = \frac{1}{2}r^2 \cdot 2\pi = \pi r^2.

Eine andere Möglichkeit zur Berechnung der Kreisfläche besteht darin, die Sektorformel von Leibniz auf die Parameterdarstellung des Kreisrandes anzuwenden. Mit x(t) = r \cos t, y(t) = r \sin t erhält man damit ebenfalls

A = \frac{1}{2} \int_0^{2\pi} x(t)y'(t) - x'(t)y(t)\, dt = \frac{1}{2} \int_0^{2\pi} r^2 \cos^2 t + r^2 \sin^2 t \, dt = \frac{1}{2} r^2 \int_0^{2\pi} dt = \pi r^2.

  Krümmung

Für die oben hergeleitete Parametrisierung \hat f(s) des Kreises nach seiner Bogenlänge ergibt sich

\hat{f}'(s) = \begin{pmatrix} -\sin(s/r) \\ \cos(s/r)\end{pmatrix} \quad\text{und}\quad \hat{f}''(s) = \begin{pmatrix} -\frac{1}{r}\cos(s/r) \\ -\frac{1}{r}\sin(s/r)\end{pmatrix}.

Für die Krümmung des Kreises erhält man daher

\kappa = |\hat{f}''(s)| = \sqrt{\frac{1}{r^2}\cos^2(s/r) + \frac{1}{r^2}\sin^2(s/r)} = \frac{1}{r}.

Die Krümmung des Kreises ist also konstant und der Krümmungsradius \tfrac{1}{\kappa} = r ist gerade sein Radius.

In der Differentialgeometrie wird gezeigt, dass eine ebene Kurve bis auf Kongruenz durch ihre Krümmung eindeutig bestimmt ist. Die einzigen ebenen Kurven mit konstanter positiver Krümmung sind daher Kreisbögen. Im Grenzfall, dass die Krümmung konstant gleich 0 ist, ergeben sich Geradenstücke.

  Isoperimetrisches Problem

Unter allen Flächen der euklidischen Ebene mit gegebenem Umfang besitzt die Kreisfläche den größten Flächeninhalt. Umgekehrt hat die Kreisfläche bei gegebenem Flächeninhalt den kleinsten Umfang. In der Ebene ist der Kreis daher die eindeutig bestimmte Lösung des sog. isoperimetrischen Problems. Obwohl diese anschaulich einleuchtende Tatsache schon den Mathematikern im antiken Griechenland bekannt war, wurden formale Beweise erst im 19. Jahrhundert erbracht. Da eine Kurve gesucht ist, die ein Funktional maximiert, nämlich den umschlossenen Flächeninhalt, handelt es sich dabei aus moderner Sicht um ein Problem der Variationsrechnung. Ein gängiger Beweis für stückweise stetige Kurven verwendet die Theorie der Fourierreihen.[17]

  Verallgemeinerungen und verwandte Themen

  Sphäre

Hauptartikel: Sphäre (Mathematik)

Es ist möglich, den Kreis als Objekt der Ebene in den dreidimensionalen Raum zu verallgemeinern. Dann erhält man die Hülle einer Kugel. Dieses Objekt wird in der Mathematik Sphäre oder genauer 2-Sphäre genannt. Analog lässt sich die 2-Sphäre auf n Dimensionen zur n-Sphäre verallgemeinern. In diesem Kontext nennt man den Kreis auch 1-Sphäre.

  Kegelschnitte

Hauptartikel: Kegelschnitt
  Der Kreis als Kegelschnitt

In der ebenen Geometrie kann der Kreis als spezielle Ellipse aufgefasst werden, bei dem die beiden Brennpunkte mit dem Kreismittelpunkt zusammenfallen. Beide Halbachsen sind dabei gleich dem Kreisradius. Der Kreis ist daher ein spezieller Kegelschnitt: Er entsteht als Schnitt eines geraden Kreiskegels mit einer Ebene senkrecht zu Kegelachse. Er ist damit ein Spezialfall einer zweidimensionalen Quadrik.

Hierbei ergibt sich eine weitere, äquivalente Definition für Kreise (Kreis des Apollonios): Ein Kreis ist die Menge aller Punkte in der Ebene, für die der Quotient q ihrer Abstände von zwei gegebenen Punkten konstant ist. Die beiden Punkte liegen auf einem von M ausgehenden Strahl im Abstand r/q bzw. r*q und wechselseitig auf der Polaren des jeweils anderen Punktes als Pol. Ähnliche Definitionen gibt es auch für die Ellipse (konstante Summe), Hyperbel (konstante Differenz) und die Cassinische Kurve (konstantes Produkt der Abstände).

  Kreise in der synthetischen Geometrie

In der synthetischen Geometrie können Kreise in bestimmten affinen Ebenen (zum Beispiel präeuklidischen Ebenen) ohne einen Abstandsbegriff allein durch eine Orthogonalitätsrelation definiert werden, indem der Satz vom Umkreis (Mittellotensatz) zur Definition des Kreises verwendet wird. Dadurch kann dann ein schwächerer Begriff der „Abstands-“ oder „Längengleichheit“ von Punktepaaren (A,B) in solchen Ebenen eingeführt werden. → Siehe dazu Präeuklidische Ebene.

  Zeichnung im digitalen Raster

Für das Zeichnen von angenäherten Kreisen in einem Punktraster wurden mehrere Algorithmen entwickelt, siehe dazu Rasterung von Kreisen. Diese Verfahren sind insbesondere für die Computergrafik von Belang. Für die zweifarbige Rasterung von Kreisen reichen Grundrechenarten aus.

  Siehe auch

  Literatur

  Weblinks

 Commons: Kreis – Sammlung von Bildern, Videos und Audiodateien

  Einzelnachweise

  1. Ilja Nikolajewitsch Bronštein: Taschenbuch der Mathematik. Verlag Harri Deutsch, 5. Auflage, Thun und Frankfurt 2001, S. 143.
  2. Max Koecher, Aloys Krieg: Ebene Geometrie. 3. Auflage. Springer, Berlin Heidelberg New York 2007, ISBN 978-3-540-49327-3, S 143.
  3. Scriba, Schreiber: 5000 Jahre Geometrie. 2005, S. 32–33.
  4. Christoph J. Scriba, Peter Schreiber: 5000 Jahre Geometrie: Geschichte, Kulturen, Menschen (Vom Zählstein zum Computer). Springer, Berlin, Heidelberg, New York, ISBN 3-540-67924-3, S. 13.
  5. Christoph J. Scriba, Peter Schreiber: 5000 Jahre Geometrie: Geschichte, Kulturen, Menschen (Vom Zählstein zum Computer). Springer, Berlin, Heidelberg, New York, ISBN 3-540-67924-3, S. 18.
  6. Christoph J. Scriba, Peter Schreiber: 5000 Jahre Geometrie: Geschichte, Kulturen, Menschen (Vom Zählstein zum Computer). Springer, Berlin, Heidelberg, New York, ISBN 3-540-67924-3, S. 19–20.
  7. Christoph J. Scriba, Peter Schreiber: 5000 Jahre Geometrie: Geschichte, Kulturen, Menschen (Vom Zählstein zum Computer). Springer, Berlin, Heidelberg, New York, ISBN 3-540-67924-3, S. 31–33.
  8. Max Koecher, Aloys Krieg: Ebene Geometrie. Springer, Berlin, Heidelberg, 3. neu bearbeitete und erweiterte Auflage 2007, Korrigierter Nachdruck 2009, ISBN 978-3-540-49327-3, S. 145.
  9. Christoph J. Scriba, Peter Schreiber: 5000 Jahre Geometrie: Geschichte, Kulturen, Menschen (Vom Zählstein zum Computer). Springer, Berlin, Heidelberg, New York, ISBN 3-540-67924-3, S. 49–50.
  10. a b In englischer Übersetzung von Thomas Little Heath: The works of Archimedes, ed. in modern notation, with introductory chapters. University press, Cambridge 1897. Kreismessung: S.91ff., Über Spiralen: S.151ff. (Digitalisat)
  11. Euklids Elemente XII, § 2.
  12. s. Gericke: Antike und Orient, S.120ff.
  13. Scriba, Schreiber: 5000 Jahre Geometrie. 2005, S. 40–42.
  14. Christoph J. Scriba, Peter Schreiber: 5000 Jahre Geometrie: Geschichte, Kulturen, Menschen (Vom Zählstein zum Computer). Springer, Berlin, Heidelberg, New York, ISBN 3-540-67924-3, S. 72–73.
  15. Christoph J. Scriba, Peter Schreiber: 5000 Jahre Geometrie: Geschichte, Kulturen, Menschen (Vom Zählstein zum Computer). Springer, Berlin, Heidelberg, New York, ISBN 3-540-67924-3, S. 247–248.
  16. Christoph J. Scriba, Peter Schreiber: 5000 Jahre Geometrie: Geschichte, Kulturen, Menschen (Vom Zählstein zum Computer). Springer, Berlin, Heidelberg, New York, ISBN 3-540-67924-3, S. 405–406.
  17. Hurwitz Quelques applications geometriques des series de Fourier, Annales de l’Ecole Normale, Bd. 19, 1902, S. 357–408, der Beweis findet sich zum Beispiel in Blaschke Vorlesungen über Differentialgeometrie, Bd.1, Springer, 1924, S.45
   
               

Schelten

                   
Schelten
Wappen von Schelten
Basisdaten
Staat: Schweiz
Kanton: Bern (BE)
Verwaltungskreis: Berner Juraw
BFS-Nr.: 0708i1f3f4
Postleitzahl: 2827
Koordinaten: 608628 / 24296647.3374967.552783746Koordinaten: 47° 20′ 15″ N, 7° 33′ 10″ O; CH1903: 608628 / 242966
Höhe: 746 m ü. M.
Fläche: 5.61 km²
Einwohner: 41 (31. Dezember 2010)[1]
Karte
Bielersee Frankreich Kanton Jura Kanton Neuenburg Kanton Solothurn Kanton Solothurn Biel/Bienne (Verwaltungskreis) Seeland (Verwaltungskreis) Emmental (Verwaltungskreis) Oberaargau (Verwaltungskreis) Belprahon Bévilard Champoz Châtelat Corcelles BE Corgémont Cormoret Cortébert Court BE Courtelary Crémines Diesse Eschert Grandval BE La Ferrière BE La Heutte Lamboing La Neuveville Loveresse Malleray Monible Mont-Tramelan Moutier Nods BE Orvin Perrefitte Péry Plagne BE Pontenet Prêles Rebévelier Reconvilier Mont-Tramelan Renan BE Roches BE Romont BE Saicourt Saint-Imier Saules BE Schelten Seehof BE Sonceboz-Sombeval Sonvilier Sornetan Sorvilier Souboz Tavannes Tramelan Vauffelin Villeret BEKarte von Schelten
Über dieses Bild
ww

Schelten ist eine politische Gemeinde im Verwaltungskreis Berner Jura des Kantons Bern in der Schweiz. Bis 1914 hiess die Gemeinde offiziell La Scheulte. Ebenfalls den Namen Schelten trug die heute jurassische Ortschaft und frühere Gemeinde Seleute.

Inhaltsverzeichnis

  Geographie

Schelten liegt auf 746 m ü. M., 15 km ostnordöstlich des Orts Moutier (Luftlinie) und ist damit die östlichste Gemeinde des Bezirks Moutier und zugleich die nördlichste Gemeinde des Kantons Bern. Die Streusiedlung liegt im engen Tal des Scheltenbaches (französisch La Scheulte), eines rechten Zuflusses der Birs, im Kettenjura.

Die Fläche des 5.6 km² grossen Gemeindegebiets umfasst einen Abschnitt des Tals im Quellgebiet des Scheltenbachs. Das Gebiet ist stark reliefiert und besitzt mehrere kleine Seitentäler. Im Norden reicht Schelten bis auf den Dürrenberg (1'031 m ü. M.), im Nordosten an den Hang der Hohen Winde. Nach Süden erstreckt sich das Gemeindegebiet über den Weierhubel (979 m ü. M.) bis auf die Jurahöhen Schönenberg (1'192 m ü. M.) und Stierenberg (mit 1'220 m ü. M. der höchste Punkt von Schelten). Von der Gemeindefläche entfielen 1997 2 % auf Siedlungen, 61 % auf Wald und Gehölze, 36 % auf Landwirtschaft und etwas weniger als 1 % war unproduktives Land.

Die Gemeinde Schelten besteht aus den Weilern Scheltenmühle (746 m ü. M.) am Scheltenbach und Lochhaus (782 m ü. M.) in einem südlichen Seitental, ferner gehören zahlreiche Einzelhöfe dazu. Schelten ist nur an einem Punkt mit dem übrigen Gebiet des Kantons Bern (Gemeinde Seehof BE) verbunden. Nachbargemeinden von Schelten sind Mervelier und Vermes im Kanton Jura sowie Aedermannsdorf und Beinwil im Kanton Solothurn.

  Bevölkerung

Mit 41 Einwohnern (Stand 31. Dezember 2010) gehört Schelten zu den kleinsten Gemeinden des Berner Juras. Von den Bewohnern sind 82,7 Prozent deutschsprachig und 15,4 Prozent französischsprachig (Stand 2000). Die Bevölkerungszahl von Schelten belief sich 1850 auf 82 Einwohner, 1880 auf 123 Einwohner. Danach wurde bis 1960 ein markanter Rückgang um 60 Prozent auf 49 Personen registriert. Seither wurden nur noch geringe Schwankungen verzeichnet.

  Wirtschaft

Schelten lebt von der Landwirtschaft, wobei Milchwirtschaft und Viehzucht überwiegen. Ausserhalb des primären Sektors gibt es Arbeitsplätze in einem Restaurant an der Scheltenpassstrasse.

  Verkehr

Die Gemeinde liegt weit abseits der grösseren Durchgangsstrassen an der Kantonsstrasse, die von Delémont (JU) durch das Val Terbi und über den Scheltenpass nach Balsthal (SO) führt. Schelten ist nicht an das Netz des öffentlichen Verkehrs angeschlossen. Die nächste Ortschaft mit Anschluss an ein öffentliches Busnetz ist die Gemeinde Mervelier (ca. 7 km westlich von Schelten).

  Geschichte

Schelten unterstand bis Ende des 18. Jahrhunderts der Propstei Moutier-Grandval. Von 1797 bis 1815 gehörte Schelten zu Frankreich und war anfangs Teil des Département du Mont Terrible, das 1800 mit dem Département Haut-Rhin verbunden wurde. Durch den Entscheid des Wiener Kongresses kam der Ort 1815 an den Kanton Bern zur im Val Terbi gelegenen Exklave des Bezirks Moutier. Seit 1914 ist die deutschsprachige Variante des Ortsnamens verbindlich.

Das deutschsprachige Schelten entschied sich in den Juraplebisziten für den Verbleib beim Kanton Bern, während die französischsprachigen Gemeinden des Val Terbi 1976 zum Distrikt Delémont übertraten. Schelten ist seither (ausser am «Viergemeindenpunkt») nur noch über das Gebiet anderer Kantone erreichbar. Dadurch wurde Schelten eine funktionale Exklave des Kantons Bern.

  Sehenswürdigkeiten

An der Scheltenpassstrasse steht die Kapelle Sankt Antonius, die 1860 erbaut wurde. In den Weilern stehen einige charakteristische Bauernhäuser aus dem 18. und 19. Jahrhundert.

  Weblinks

  Einzelnachweise

  1. Statistik Schweiz – STAT-TAB: Ständige und Nichtständige Wohnbevölkerung nach Region, Geschlecht, Nationalität und Alter
   
         
   

Schaltkreis

                   

Ein Schaltkreis ist eine Einheit/Baugruppe einer elektrischen oder elektronischen Schaltung und erfüllt eine definierte Funktion.[1]

Schaltkreise lösen eine große Anzahl der Probleme, die man in elektrischen bzw. elektronischen Steuerungssystemen findet, entscheidungsorientiert. Viele dieser Entscheidungen führen zu so einfachen Ergebnissen wie z. B. das Ein- oder Abschalten eines Motors, einer oder mehrerer Lampen in Kontroll-Funktionen.

Analog spricht man bei Nervenverbindungen bei Menschen und Tieren von sogenannten neuronalen Schaltkreisen. Sie basieren auf elektrochemischen Reaktionen und Ionentransport.

  Einfacher Schaltkreis bestehend aus Spannungsquelle V und einem Widerstand R

Inhaltsverzeichnis

  Geschichte

Der erste Schaltkreis war wahrscheinlich ein Eisenbahn-Signalsystem, welches um 1890 eingeführt wurde.

Die 1938 veröffentlichte MIT-Master Arbeit von C.E. Shannon „A symbolic analysis of relay and switching circuit“[2] (Eine symbolische Analyse von Relais und Schaltkreisen) löste weltweites Interesse aus.

Die Schaltalgebra ermöglichte die ersten „Control Units“, die mit einem integrierten Rechner die Programmierung eines Befehlssatzes ermöglichten. Diese „ein Bit“ Rechner haben keine Verschleißteile mehr. Verkehrsampeln und Aufzüge werden kontaktlos und fast wartungsfrei gesteuert.

Vom Standpunkt der Arbeitsgeschwindigkeit repräsentieren die in digitalen elektronischen Rechnern verwendeten Schaltkreise die Spitze moderner Entwicklung.

  Einteilung

Eine Aufteilung erfolgt in analoge Schaltkreise, die kontinuierlich veränderliche Ströme und Spannungen verarbeiten, die digitalen Schaltkreise dagegen arbeiten mit definierten, diskreten Logik-Pegeln (0 und 1).

Es gibt auch Mischformen beider Typen (engl. mixed-signal), z. B. zur digitalen Verarbeitung analoger Signale in Signalprozessoren durch Umsetzung in digitale Signale oder umgekehrt mittels Analog-Digital- und Digital-Analog-Umsetzer.

Ein Integrierter Schaltkreis (IC, oft als Chip bezeichnet) kann wiederum aus mehreren Schaltkreisen oder Funktionsbausteinen bestehen. Der Begriff Schaltkreis ist also nicht absolut, sondern von der Betrachtungsebene in der Design-Hierarchie eines Systems abhängig. Viele kleine Schaltkreise formen einen übergeordneten Schaltkreis, zum Beispiel einen komplexen Chip oder auch eine Leiterplatte mit mehreren Chips oder elektronischen Bauteilen.

Des Weiteren unterscheidet man in der Digitaltechnik kombinatorische Schaltkreise (ohne Speicherelemente) und sequentielle Schaltkreise (mit Speicherelementen).

  Anwendungsbeispiele

Ein verbreitetes und anschauliches Anwendungsgebiet sind die Selbstwählanlagen im Fernsprechverkehr.

Im Transportwesen bedienen Schaltkreise seit langem Eisenbahn- und Schnellverkehrslinien durch sichere und schnelle Steuerung und schaffen Sicherheit durch den Ausschluss menschlicher Fehlentscheidungen.

  Siehe auch

  Einzelnachweise

  1.  Böge et. al.: Vieweg Lexikon der Technik. Vieweg, Braunschweig/Wiesbaden 1997, ISBN 3-528-04959-6.
  2. C. E. Shannon: A symbolic analysis of relay and switching circuit. 1936, abgerufen am 23. Dezember 2008 (englisch).

de:Elektrische Schaltung

   
               

 

Toutes les traductions de Schaltkreis


Contenu de sensagent

  • définitions
  • synonymes
  • antonymes
  • encyclopédie

dictionnaire et traducteur pour sites web

Alexandria

Une fenêtre (pop-into) d'information (contenu principal de Sensagent) est invoquée un double-clic sur n'importe quel mot de votre page web. LA fenêtre fournit des explications et des traductions contextuelles, c'est-à-dire sans obliger votre visiteur à quitter votre page web !

Essayer ici, télécharger le code;

SensagentBox

Avec la boîte de recherches Sensagent, les visiteurs de votre site peuvent également accéder à une information de référence pertinente parmi plus de 5 millions de pages web indexées sur Sensagent.com. Vous pouvez Choisir la taille qui convient le mieux à votre site et adapter la charte graphique.

Solution commerce électronique

Augmenter le contenu de votre site

Ajouter de nouveaux contenus Add à votre site depuis Sensagent par XML.

Parcourir les produits et les annonces

Obtenir des informations en XML pour filtrer le meilleur contenu.

Indexer des images et définir des méta-données

Fixer la signification de chaque méta-donnée (multilingue).


Renseignements suite à un email de description de votre projet.

Jeux de lettres

Les jeux de lettre français sont :
○   Anagrammes
○   jokers, mots-croisés
○   Lettris
○   Boggle.

Lettris

Lettris est un jeu de lettres gravitationnelles proche de Tetris. Chaque lettre qui apparaît descend ; il faut placer les lettres de telle manière que des mots se forment (gauche, droit, haut et bas) et que de la place soit libérée.

boggle

Il s'agit en 3 minutes de trouver le plus grand nombre de mots possibles de trois lettres et plus dans une grille de 16 lettres. Il est aussi possible de jouer avec la grille de 25 cases. Les lettres doivent être adjacentes et les mots les plus longs sont les meilleurs. Participer au concours et enregistrer votre nom dans la liste de meilleurs joueurs ! Jouer

Dictionnaire de la langue française
Principales Références

La plupart des définitions du français sont proposées par SenseGates et comportent un approfondissement avec Littré et plusieurs auteurs techniques spécialisés.
Le dictionnaire des synonymes est surtout dérivé du dictionnaire intégral (TID).
L'encyclopédie française bénéficie de la licence Wikipedia (GNU).

Copyright

Les jeux de lettres anagramme, mot-croisé, joker, Lettris et Boggle sont proposés par Memodata.
Le service web Alexandria est motorisé par Memodata pour faciliter les recherches sur Ebay.
La SensagentBox est offerte par sensAgent.

Traduction

Changer la langue cible pour obtenir des traductions.
Astuce: parcourir les champs sémantiques du dictionnaire analogique en plusieurs langues pour mieux apprendre avec sensagent.

 

5000 visiteurs en ligne

calculé en 0,094s


Je voudrais signaler :
section :
une faute d'orthographe ou de grammaire
un contenu abusif (raciste, pornographique, diffamatoire)
une violation de copyright
une erreur
un manque
autre
merci de préciser :