Mon compte

connexion

inscription

   Publicité D▼


 » 
allemand anglais arabe bulgare chinois coréen croate danois espagnol espéranto estonien finnois français grec hébreu hindi hongrois islandais indonésien italien japonais letton lituanien malgache néerlandais norvégien persan polonais portugais roumain russe serbe slovaque slovène suédois tchèque thai turc vietnamien
allemand anglais arabe bulgare chinois coréen croate danois espagnol espéranto estonien finnois français grec hébreu hindi hongrois islandais indonésien italien japonais letton lituanien malgache néerlandais norvégien persan polonais portugais roumain russe serbe slovaque slovène suédois tchèque thai turc vietnamien

Significations et usages de Ununseptium

Définition

⇨ voir la définition de Wikipedia

   Publicité ▼

Locutions

Wikipedia

Ununseptium

                   
livermoriumununseptiumununoctium
At

Uus

(Uhs)
Appearance
Unknown
General properties
Name, symbol, number ununseptium, Uus, 117
Pronunciation Listeni/nnˈsɛptiəm/
oon-oon-SEP-tee-əm
Category notes Unknown
Group, period, block 177, p
Standard atomic weight [294]
Electron configuration perhaps [Rn] 5f14 6d10 7s2 7p5
(predicted)
Electrons per shell 2, 8, 18, 32, 32, 18, 7
(predicted) (Image)
Physical properties
Atomic properties
Oxidation states −1, +1, +3, +5 (prediction)[1]
Covalent radius 165 (estimated)[2] pm
Miscellanea
CAS registry number 54101-14-3
Most stable isotopes
Main article: Isotopes of ununseptium
iso NA half-life DM DE (MeV) DP
294Uus syn 78 (+370, -36) ms α 10.81 290Uup
293Uus syn 14 (+11, -4) ms α 11.11,11.00,10.91 289Uup
· r

Ununseptium is the temporary name of a superheavy artificial chemical element with temporary symbol Uus and atomic number 117. Six atoms were detected by a joint Russia–US collaboration at Dubna, Moscow Oblast, Russia, in November 2010.[3][4] Although it is currently placed as the heaviest member of the halogen family, there is no experimental evidence that the chemical properties of ununseptium match those of the lighter members like iodine or astatine and theoretical analysis suggests there may be some notable differences.

Contents

  History

  Discovery

In January 2010, scientists at the Flerov Laboratory of Nuclear Reactions announced internally[4] that they had succeeded in detecting the decay of a new element with Z=117 using the reactions:

48
20
Ca
+ 249
97
Bk
297
117
Uus
* → 294
117
Uus
+ 3 1
0
n
48
20
Ca
+ 249
97
Bk
297
117
Uus
* → 293
117
Uus
+ 4 1
0
n

Just six atoms were synthesized of two neighbouring isotopes, neither of which decayed to known isotopes of lighter elements. Their results were published on 9 April 2010 in the journal Physical Review Letters.[5]

  Naming

The element with atomic number 117 is historically known as eka-astatine. The name ununseptium is a systematic element name, used as a placeholder until the discovery is acknowledged by the IUPAC, and the IUPAC decides on a name. Usually, the name suggested by the discoverer(s) is chosen.

According to current guidelines from IUPAC, the ultimate name for all new elements should end in "-ium", which means the name for ununseptium may end in -ium, not -ine, even if ununseptium turns out to be a halogen.[6]

The name Dunwoodium was suggested by a small number of scientists in training.

  Future experiments

The team at the GSI in Darmstadt, recently acknowledged as the discoverers of copernicium, have begun experiments aimed towards a synthesis of ununseptium. The GSI have indicated that if they are unable to acquire any 249Bk from the United States, which is likely given the situation regarding the attempt in Russia, they will study the reaction 244Pu(51V,xn) instead, or possibly 243Am(50Ti,xn).[7]

  Isotopes and nuclear properties

  Nucleosynthesis

Target-projectile combinations leading to Z=117 compound nuclei

The below table contains various combinations of targets and projectiles which could be used to form compound nuclei with atomic number 117.

Target Projectile CN Attempt result
208Pb 81Br 289Uus Reaction yet to be attempted
209Bi 79Se 288Uus Reaction yet to be attempted
209Bi 82Se 291Uus Reaction yet to be attempted
226Ra 63Cu 289Uus Reaction yet to be attempted
226Ra 65Cu 291Uus Reaction yet to be attempted
232Th 59Co 291Uus Reaction yet to be attempted
238U 55Mn 293Uus Reaction yet to be attempted
237Np 54Cr 291Uus Reaction yet to be attempted
244Pu 51V 295Uus Reaction yet to be attempted
243Am 50Ti 293Uus Reaction yet to be attempted
248Cm 45Sc 293Uus Reaction yet to be attempted
249Bk 48Ca 297Uus Successful reaction
249Cf 41K 290Uus Reaction yet to be attempted

  Hot fusion

249Bk (48Ca, xn)297-xUus (x=3,4)

Between July 2009 and February 2010, the team at the JINR (Flerov Laboratory of Nuclear Reactions) ran a 7-month-long experiment to synthesize ununseptium using the reaction above.[8] The expected cross-section was of the order of 2 pb. The expected evaporation residues, 293Uus and 294Uus, were predicted to decay via relatively long decay chains as far as isotopes of dubnium or lawrencium.


The team published a scientific paper in April 2010 (first results were presented in January 2010[4]) that six atoms of the neighbouring isotopes 294Uus (one atom) and 293Uus (five atoms) were detected. The heavier isotope decayed by the successive emission of six alpha particles down as far as the new isotope 270Db which underwent apparent spontaneous fission. On the other hand, the lighter odd-even isotope decayed by the emission of just three alpha particles, as far as 281Rg, which underwent spontaneous fission. The reaction was run at two different excitation energies of 35 MeV (dose 2x1019) and 39 MeV (dose 2.4×1019). Initial decay data was published as a preliminary presentation on the JINR website.[10]

A further experiment in May 2010, looking at the chemistry of one of the decay products, ununtrium, identified a further two atoms derived from 294117.

  Chronology of isotope discovery

Isotope Year discovered Discovery reaction
294Uus 2009 249Bk(48Ca,3n)
293Uus 2009 249Bk(48Ca,4n)

  Theoretical calculations

  Evaporation residue cross sections

The below table contains various targets-projectile combinations for which calculations have provided estimates for cross section yields from various neutron evaporation channels. The channel with the highest expected yield is given.

DNS = Di-nuclear system; σ = cross section

Target Projectile CN Channel (product) σmax Model Ref
209Bi 82Se 291Uus 1n (290Uus) 15 fb DNS [11]
209Bi 79Se 288Uus 1n (287Uus) 0.2 pb DNS [11]
232Th 59Co 291Uus 2n (289Uus) 0.1 pb DNS [11]
238U 55Mn 293Uus 2-3n (291,290Uus) 70 fb DNS [11]
244Pu 51V 295Uus 3n (292Uus) 0.6 pb DNS [11]
248Cm 45Sc 293Uus 4n (289Uus) 2.9 pb DNS [11]
246Cm 45Sc 291Uus 4n (287Uus) 1 pb DNS [11]
249Bk 48Ca 297Uus 3n (294Uus) 2.1 pb ; 3 pb DNS [11][12]
247Bk 48Ca 295Uus 3n (292Uus) 0.8, 0.9 pb DNS [11][12]

  Decay characteristics

Theoretical calculations in a quantum tunneling model with mass estimates from a macroscopic-microscopic model predict the alpha-decay half-lives of isotopes of ununseptium (namely, 289–303Uus) to be around 0.1–40 ms.[13][14][15]

  Chemical properties

  Extrapolated chemical properties

Certain chemical properties, such as bond lengths, are predicted to differ from what one would expect based on periodic trends from the lighter halogens (because of relativistic effects). It may have some metalloid properties, similar to astatine.[16] For example, solid ununseptium should resemble astatine in its metallic appearance, and it is expected that ununseptium will show dominant +1 and +3 oxidation states instead of the −1 oxidation state common to all the natural halogens.[17]

  See also

  References

  1. ^ Haire, Richard G. (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean. The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. p. 1724. ISBN 1-4020-3555-1. 
  2. ^ Chemical Data. Ununhexium - Uuh, Royal Chemical Society
  3. ^ Element 117 discovered at physicstoday.org
  4. ^ a b c Recommendations: 31st meeting, PAC for Nuclear Physics
  5. ^ Yu. Ts. Oganessian et al., Synthesis of a New Element with Atomic Number Z=117, Phys. Rev. Lett. 104, 142502 (2010). doi:10.1103/PhysRevLett.104.142502.
  6. ^ Koppenol, W. H. (2002). "Naming of new elements (IUPAC Recommendations 2002)". Pure and Applied Chemistry 74 (5): 787. DOI:10.1351/pac200274050787. http://media.iupac.org/publications/pac/2002/pdf/7405x0787.pdf. 
  7. ^ "Toward element 117 – CED – TASCA 08" (PDF). http://www-win.gsi.de/tasca08/contributions/TASCA08_Cont_Duellmann2b.pdf. Retrieved 2010-04-12. 
  8. ^ Ununseptium – the 117th element at AtomInfo.ru
  9. ^ a b Roman Sagaidak. "Experiment setting on synthesis of superheavy nuclei in fusion-evaporation reactions. Preparation to synthesis of new element with Z=117". http://159.93.28.88/linkc/education/SHE_Sagaidak.pdf. Retrieved 2009-07-07. 
  10. ^ Walter Grenier: Recommendations, a PowerPoint presentation at the January 2010 meeting of the PAC for Nuclear Physics
  11. ^ a b c d e f g h i Zhao-Qing, Feng; Gen-Ming, Jin; Ming-Hui, Huang; Zai-Guo, Gan; Nan, Wang; Jun-Qing, Li (2007). "Possible Way to Synthesize Superheavy Element Z = 117". Chinese Physics Letters 24 (9): 2551. arXiv:0708.0159. Bibcode 2007ChPhL..24.2551F. DOI:10.1088/0256-307X/24/9/024. 
  12. ^ a b Feng, Z; Jin, G; Li, J; Scheid, W (2009). "Production of heavy and superheavy nuclei in massive fusion reactions". Nuclear Physics A 816: 33. arXiv:0803.1117. Bibcode 2009NuPhA.816...33F. DOI:10.1016/j.nuclphysa.2008.11.003. 
  13. ^ C. Samanta, P. Roy Chowdhury and D.N. Basu (2007). "Predictions of alpha decay half lives of heavy and superheavy elements". Nucl. Phys. A 789: 142. arXiv:nucl-th/0703086. Bibcode 2007NuPhA.789..142S. DOI:10.1016/j.nuclphysa.2007.04.001. 
  14. ^ P. Roy Chowdhury, C. Samanta, and D. N. Basu (2008). "Search for long lived heaviest nuclei beyond the valley of stability". Phys. Rev. C 77 (4): 044603. Bibcode 2008PhRvC..77d4603C. DOI:10.1103/PhysRevC.77.044603. 
  15. ^ P. Roy Chowdhury, C. Samanta, and D. N. Basu (2008). "Nuclear half-lives for α -radioactivity of elements with 100 ≤ Z ≤ 130". At. Data & Nucl. Data Tables 94 (6): 781–806. Bibcode 2008ADNDT..94..781C. DOI:10.1016/j.adt.2008.01.003. 
  16. ^ Trond Saue. "Principles and Applications of Relativistic Molecular Calculations". http://dirac.chem.sdu.dk/thesis/96.saue_phd.pdf. , page 76
  17. ^ Seaborg (ca. 2006). "transuranium element (chemical element)". Encyclopædia Britannica. http://www.britannica.com/EBchecked/topic/603220/transuranium-element. Retrieved 2010-03-16. 

  External links

  • Eric Scerri, The Periodic Table, Its Story and Its Significance, Oxford University Press, 2007
   
               

   Publicité ▼

 

Toutes les traductions de Ununseptium


Contenu de sensagent

  • définitions
  • synonymes
  • antonymes
  • encyclopédie

dictionnaire et traducteur pour sites web

Alexandria

Une fenêtre (pop-into) d'information (contenu principal de Sensagent) est invoquée un double-clic sur n'importe quel mot de votre page web. LA fenêtre fournit des explications et des traductions contextuelles, c'est-à-dire sans obliger votre visiteur à quitter votre page web !

Essayer ici, télécharger le code;

SensagentBox

Avec la boîte de recherches Sensagent, les visiteurs de votre site peuvent également accéder à une information de référence pertinente parmi plus de 5 millions de pages web indexées sur Sensagent.com. Vous pouvez Choisir la taille qui convient le mieux à votre site et adapter la charte graphique.

Solution commerce électronique

Augmenter le contenu de votre site

Ajouter de nouveaux contenus Add à votre site depuis Sensagent par XML.

Parcourir les produits et les annonces

Obtenir des informations en XML pour filtrer le meilleur contenu.

Indexer des images et définir des méta-données

Fixer la signification de chaque méta-donnée (multilingue).


Renseignements suite à un email de description de votre projet.

Jeux de lettres

Les jeux de lettre français sont :
○   Anagrammes
○   jokers, mots-croisés
○   Lettris
○   Boggle.

Lettris

Lettris est un jeu de lettres gravitationnelles proche de Tetris. Chaque lettre qui apparaît descend ; il faut placer les lettres de telle manière que des mots se forment (gauche, droit, haut et bas) et que de la place soit libérée.

boggle

Il s'agit en 3 minutes de trouver le plus grand nombre de mots possibles de trois lettres et plus dans une grille de 16 lettres. Il est aussi possible de jouer avec la grille de 25 cases. Les lettres doivent être adjacentes et les mots les plus longs sont les meilleurs. Participer au concours et enregistrer votre nom dans la liste de meilleurs joueurs ! Jouer

Dictionnaire de la langue française
Principales Références

La plupart des définitions du français sont proposées par SenseGates et comportent un approfondissement avec Littré et plusieurs auteurs techniques spécialisés.
Le dictionnaire des synonymes est surtout dérivé du dictionnaire intégral (TID).
L'encyclopédie française bénéficie de la licence Wikipedia (GNU).

Copyright

Les jeux de lettres anagramme, mot-croisé, joker, Lettris et Boggle sont proposés par Memodata.
Le service web Alexandria est motorisé par Memodata pour faciliter les recherches sur Ebay.
La SensagentBox est offerte par sensAgent.

Traduction

Changer la langue cible pour obtenir des traductions.
Astuce: parcourir les champs sémantiques du dictionnaire analogique en plusieurs langues pour mieux apprendre avec sensagent.

 

5405 visiteurs en ligne

calculé en 0,047s


Je voudrais signaler :
section :
une faute d'orthographe ou de grammaire
un contenu abusif (raciste, pornographique, diffamatoire)
une violation de copyright
une erreur
un manque
autre
merci de préciser :