Mon compte

connexion

inscription

   Publicité D▼


 » 
allemand anglais arabe bulgare chinois coréen croate danois espagnol espéranto estonien finnois français grec hébreu hindi hongrois islandais indonésien italien japonais letton lituanien malgache néerlandais norvégien persan polonais portugais roumain russe serbe slovaque slovène suédois tchèque thai turc vietnamien
allemand anglais arabe bulgare chinois coréen croate danois espagnol espéranto estonien finnois français grec hébreu hindi hongrois islandais indonésien italien japonais letton lituanien malgache néerlandais norvégien persan polonais portugais roumain russe serbe slovaque slovène suédois tchèque thai turc vietnamien

Significations et usages de crystal

Définition

crystal (n.)

1.a protective cover that protects the face of a watch

2.glassware made of quartz

3.a crystalline element used as a component in various electronic devices

4.a rock formed by the solidification of a substance; has regularly repeating internal structure; external plane faces

5.colorless glass made of almost pure silica

6.a solid formed by the solidification of a chemical and having a highly regular atomic structure

   Publicité ▼

Merriam Webster

CrystalCrys"tal (krĭs"t�l), n. [OE. cristal, F. cristal, L. crystallum crystal, ice, fr. Gr. kry`stallos, fr. kry`os icy cold, frost; cf. AS. crystalla, fr. L. crystallum; prob. akin to E. crust. See Crust, Raw.]
1. (Chem. & Min.) The regular form which a substance tends to assume in solidifying, through the inherent power of cohesive attraction. It is bounded by plane surfaces, symmetrically arranged, and each species of crystal has fixed axial ratios. See Crystallization.

2. The material of quartz, in crystallization transparent or nearly so, and either colorless or slightly tinged with gray, or the like; -- called also rock crystal. Ornamental vessels are made of it. Cf. Smoky quartz, Pebble; also Brazilian pebble, under Brazilian.

3. A species of glass, more perfect in its composition and manufacture than common glass, and often cut into ornamental forms. See Flint glass.

4. The glass over the dial of a watch case.

5. Anything resembling crystal, as clear water, etc.

The blue crystal of the seas. Byron.

Blood crystal. See under Blood. -- Compound crystal. See under Compound. -- Iceland crystal, a transparent variety of calcite, or crystallized calcium carbonate, brought from Iceland, and used in certain optical instruments, as the polariscope. -- Rock crystal, or Mountain crystal, any transparent crystal of quartz, particularly of limpid or colorless quartz.

CrystalCrys"tal, a. Consisting of, or like, crystal; clear; transparent; lucid; pellucid; crystalline.

Through crystal walls each little mote will peep. Shak.

By crystal streams that murmur through the meads. Dryden.

The crystal pellets at the touch congeal,
And from the ground rebounds the ratting hail.
H. Brooks.

   Publicité ▼

Définition (complément)

⇨ voir la définition de Wikipedia

Synonymes

Voir aussi

Locutions

Crystal Growth • Crystal Violet • Crystal arthropathy in hyperparathyroidism • Crystal arthropathy in other metabolic disorders • Crystal arthropathy, unspecified • Crystal arthropathy, unspecified | ankle and foot • Crystal arthropathy, unspecified | forearm • Crystal arthropathy, unspecified | hand • Crystal arthropathy, unspecified | lower leg • Crystal arthropathy, unspecified | multiple sites • Crystal arthropathy, unspecified | other • Crystal arthropathy, unspecified | pelvic region and thigh • Crystal arthropathy, unspecified | shoulder region • Crystal arthropathy, unspecified | site unspecified • Crystal arthropathy, unspecified | upper arm • Liquid-crystal • Other crystal arthropathies • Other specified crystal arthropathies • Other specified crystal arthropathies | ankle and foot • Other specified crystal arthropathies | forearm • Other specified crystal arthropathies | hand • Other specified crystal arthropathies | lower leg • Other specified crystal arthropathies | multiple sites • Other specified crystal arthropathies | other • Other specified crystal arthropathies | pelvic region and thigh • Other specified crystal arthropathies | shoulder region • Other specified crystal arthropathies | site unspecified • Other specified crystal arthropathies | upper arm • Teichmann's crystal test • Virchow's crystal • crystal ammonia • crystal ball • crystal clear • crystal counter • crystal detector • crystal gazing • crystal glass • crystal lattice • crystal microphone • crystal oscillator • crystal pickup • crystal rectifier • crystal resonator • crystal set • crystal tea • crystal violet • ice crystal • ice-crystal • liquid crystal • liquid crystal display • liquid crystal state • made of crystal • of crystal • piezoelectric crystal • piezoelectric crystal element • quartz crystal • quartz-crystal • rock crystal • vibrating crystal • watch crystal

Active Matrix Liquid Crystal Display • Active-matrix liquid crystal display • Anisodemic crystal • Anisodesmic crystal • Beyond the Crystal Cave • Billy Crystal • Conquest of the Crystal Palace • Cree Lake (Crystal Lodge) Airport • Crystal (Crystal Gayle album) • Crystal 99 • Crystal Airport (Minnesota) • Crystal Ball (Prince album) • Crystal Ball (Styx album) • Crystal Ball (unreleased album) • Crystal Bay Township, Lake County, Minnesota • Crystal Beach • Crystal Beach of Galveston, Texas • Crystal Beach, Texas • Crystal Bridges Museum of American Art • Crystal Cascades • Crystal Cave • Crystal Cave (Ohio) • Crystal Cave, Bermuda • Crystal Cavern • Crystal Caverns (South Dakota) • Crystal City, Manitoba • Crystal City, Missouri • Crystal City, Texas • Crystal City-Pilot Mound/Louise Municipal Airport • Crystal Clear • Crystal Coast • Crystal Crazy • Crystal Dahl • Crystal Dream 2 • Crystal Eastman • Crystal Enterprise • Crystal Eyes • Crystal Falls Township, Michigan • Crystal Falls, Michigan • Crystal Falls, Quebec • Crystal Gayle (album) • Crystal Geyser • Crystal Globe • Crystal Hayes • Crystal Hunt • Crystal Japan • Crystal K • Crystal Kingdom Dizzy • Crystal Klein • Crystal Knight • Crystal Lake • Crystal Lake (Broward County, Florida) • Crystal Lake (Ellington) • Crystal Lake (Enfield, New Hampshire) • Crystal Lake (Gilmanton, New Hampshire) • Crystal Lake (Saskatchewan) • Crystal Lake Middle School (Pompano Beach, Florida) • Crystal Lake Park, Missouri • Crystal Lake Recreation Area • Crystal Lake South High School • Crystal Lake Township, Michigan • Crystal Lake, Barron County, Wisconsin • Crystal Lake, Florida • Crystal Lake, Illinois • Crystal Lake, Iowa • Crystal Lake, Marquette County, Wisconsin • Crystal Lake, Polk County, Florida • Crystal Lake, Wisconsin • Crystal Lakes, Missouri • Crystal Lakes, Ohio • Crystal Lawns, Illinois • Crystal Lewis • Crystal Logic • Crystal Lowe • Crystal McKellar • Crystal Mill • Crystal Morales • Crystal Mountains National Park • Crystal Mover • Crystal Night (album) • Crystal Palace (circuit) • Crystal Palace Barracks • Crystal Palace FC • Crystal Palace Football Club • Crystal Palace L.F.C. • Crystal Palace, London • Crystal Peak (Tenmile Range) • Crystal Peak (Terminator) • Crystal Peaks • Crystal Quest • Crystal Ray • Crystal Renn • Crystal River Archaeological State Park • Crystal River High School • Crystal River Preserve State Park • Crystal River, Florida • Crystal Robinson • Crystal Scales • Crystal Serenity • Crystal Shard • Crystal Singer • Crystal Skull (Stargate SG-1) • Crystal Smith • Crystal Space • Crystal Springs Rhododendron Garden • Crystal Springs, Bainbridge Island, Washington • Crystal Springs, Florida • Crystal Springs, Mississippi • Crystal Storm • Crystal Symphony • Crystal Tools • Crystal Township, Michigan • Crystal Township, Montcalm County, Michigan • Crystal Township, Oceana County, Michigan • Crystal View • Crystal Warriors • Crystal ball (disambiguation) • Crystal ball (function) • Crystal chandelier • Crystal earpiece • Crystal filter • Crystal gazing • Crystal growth • Crystal habit • Crystal method • Crystal monochromator • Crystal oven • Crystal palace f.c • Crystal palace fc • Crystal palace fc. • Crystal pattern • Crystal radio • Crystal red shrimp • Crystal structure • Crystal systems • Crystal twinning • Crystal violet lactone • Crystal's Pony Tale • Crystal, Colorado • Crystal, Maine • Crystal, Minnesota • Crystal, Nevada • Crystal, New Mexico • Crystal, North Dakota • Crystal, Wisconsin • Crystal-Kay • Crystal-gazing • Dragon Crystal • Dynamical Theory of Crystal Lattices • Galleria at Crystal Run • Harris City Academy Crystal Palace • Incline Village-Crystal Bay, Nevada • Inorganic Crystal Structure Database (ICSD) • Ionic crystal • Isodemic crystal • Isodesmic crystal • Kingdom of Crystal • Lake Crystal, Minnesota • Liquid crystal • Liquid crystal display • Liquid crystal polymer • Liquid crystal thermometer • Lisa Crystal Carver • Little Crystal • Magic Springs and Crystal Falls • Mystic Caverns and Crystal Dome • Nobody's Angel (Crystal Gayle album) • Nor Crystal Tears • Perfect crystal • Photonic crystal • Power of the Dark Crystal • Pyroelectric crystal • Rock crystal vase • Rowan and the Keeper of the Crystal • Sailor Crystal • Seligman Crystal (prize) • Single crystal • Songs from the Crystal Cave • Straight to the Heart (Crystal Gayle album) • T'Keyah Crystal Keymáh • The Bird with the Crystal Plumage • The Crystal Cave • The Crystal Lake • The Crystal Method • The Crystal Palace • The Crystal Prison • The Crystal Ship • The Crystal Star • The Crystal method • The Dark Crystal • The Dark Crystal (computer game) • The World of The Dark Crystal • The crystal Method • The crystal method • Thermotropic crystal • These Days (Crystal Gayle album) • True Love (Crystal Gayle album) • Wigner crystal • X-ray crystal truncation rod

Dictionnaire analogique









Wikipedia

Crystal

                   
  A crystal of amethyst quartz
  Microscopically, a single crystal has atoms in a near-perfect periodic arrangement; a polycrystal is composed of many microscopic crystals (called "crystallites" or "grains"); and an amorphous solid (such as glass) has no periodic arrangement even microscopically.

A crystal or crystalline solid is a solid material whose constituent atoms, molecules, or ions are arranged in an orderly, repeating pattern extending in all three spatial dimensions. In addition to their microscopic structure, large crystals are usually identifiable by their macroscopic geometrical shape, consisting of flat faces with specific, characteristic orientations.[citation needed]

The scientific study of crystals and crystal formation is known as crystallography. The process of crystal formation via mechanisms of crystal growth is called crystallization or solidification. The word crystal is derived from the Ancient Greek word κρύσταλλος (krustallos), meaning both “ice” and “rock crystal”,[1] from κρύος (kruos), "icy cold, frost".[2][3]

Common crystals include snowflakes, diamonds, and table salt; however, most common inorganic solids are polycrystals. Crystals are often symmetrically intergrown to form crystal twins.

Contents

  Crystal structure (microscopic)

Halite (table salt, NaCl): Microscopic and macroscopic

Halite crystal (microscopic)
Microscopic structure of a halite crystal. (Purple is sodium ion, green is chlorine ion.) There is cubic symmetry in the atoms' arrangement.
Halite crystal (macroscopic)
Macroscopic (~10cm) halite crystal cluster. The right-angles between crystal faces are due to the cubic symmetry of the atoms' arrangement.

The scientific definition of a "crystal" is based on the microscopic arrangement of atoms inside it, called the crystal structure. A crystal is a solid where the atoms form a periodic arrangement. (Quasicrystals are an exception, see below.)

Not all solids are crystals. For example, when liquid water starts freezing, the phase change begins with small ice crystals that grow until they fuse, forming a polycrystalline structure. In the final block of ice, each of the small crystals (called "crystallites" or "grains") is a true crystal with a periodic arrangement of atoms, but the whole polycrystal does not have a periodic arrangement of atoms, because the periodic pattern is broken at the grain boundaries. Most macroscopic inorganic solids are polycrystalline, including almost all metals, ceramics, ice, rocks, etc. Solids that are neither crystalline nor polycrystalline, such as glass, are called amorphous solids, also called glassy, vitreous, or noncrystalline. These have no periodic order, even microscopically. There are distinct differences between crystalline solids and amorphous solids: most notably, the process of forming a glass does not release the latent heat of fusion, but forming a crystal does.

A crystal structure (an arrangement of atoms in a crystal) is characterized by its unit cell, a small imaginary box containing one or more atoms in a specific spatial arrangement. The unit cells are stacked in three-dimensional space to form the crystal.

The symmetry of a crystal is constrained by the requirement that the unit cells stack perfectly with no gaps. There are 219 possible crystal symmetries, called crystallographic space groups. These are grouped into 7 crystal systems, such as cubic crystal system (where the crystals may form cubes or rectangular boxes, such as halite shown at right) or hexagonal crystal system (where the crystals may form hexagons, such as ordinary water ice).

  Crystal faces and shapes

  As a halite crystal is growing, new atoms can very easily attach to the parts of the surface with rough atomic-scale structure and many dangling bonds. Therefore these parts of the crystal grow out very quickly (yellow arrows). Eventually, the whole surface consists of smooth, stable faces, where new atoms cannot as easily attach themselves.

Crystals are commonly recognized by their shape, consisting of flat faces with sharp angles. These shape characteristics are not necessary for a crystal—a crystal is scientifically defined by its microscopic atomic arrangement, not its macroscopic shape—but the characteristic macroscopic shape is often present and easy to see.

Euhedral crystals are those with obvious, well-formed flat faces. Anhedral crystals do not, usually because the crystal is one grain in a polycrystalline solid.

The flat faces (also called facets) of a euhedral crystal are oriented in a specific way relative to the underlying atomic arrangement of the crystal: They are planes of relatively low Miller index.[4] This occurs because some surface orientations are more stable than others (lower surface energy). As a crystal grows, new atoms attach easily to the rougher and less stable parts of the surface, but less easily to the flat, stable surfaces. Therefore, the flat surfaces tend to grow larger and smoother, until the whole crystal surface consists of these plane surfaces. (See diagram on right.)

One of the oldest techniques in the science of crystallography consists of measuring the three-dimensional orientations of the faces of a crystal, and using them to infer the underlying crystal symmetry.

A crystal's habit is its visible external shape. This is determined by the crystal structure (which restricts the possible facet orientations), the specific crystal chemistry and bonding (which may favor some facet types over others), and the conditions under which the crystal formed.

  Occurrence in nature

  Ice crystals
  Fossil shell with calcite crystals

  Rocks

By volume and weight, the largest concentrations of crystals in the earth are part of the Earth's solid bedrock.

Some crystals have formed by magmatic and metamorphic processes, giving origin to large masses of crystalline rock. The vast majority of igneous rocks are formed from molten magma and the degree of crystallization depends primarily on the conditions under which they solidified. Such rocks as granite, which have cooled very slowly and under great pressures, have completely crystallized; but many kinds of lava were poured out at the surface and cooled very rapidly, and in this latter group a small amount of amorphous or glassy matter is common. Other crystalline rocks, the metamorphic rocks such as marbles, mica-schists and quartzites, are recrystallized. This means that they were at first fragmental rocks like limestone, shale and sandstone and have never been in a molten condition nor entirely in solution, but the high temperature and pressure conditions of metamorphism have acted on them by erasing their original structures and inducing recrystallization in the solid state.[5]

Other rock crystals have formed out of precipitation from fluids, commonly water, to form druses or quartz veins. The evaporites such as rock salt, gypsum and some limestones have been deposited from aqueous solution, mostly owing to evaporation in arid climates.

  Ice

Water-based ice in the form of snow, sea ice and glaciers is a very common manifestation of crystalline or polycrystalline matter on Earth. A single snowflake is typically a single crystal, while an ice cube is a polycrystal.

  Organigenic crystals

Many living organisms are able to produce crystals, for example calcite and aragonite in the case of most molluscs or hydroxylapatite in the case of vertebrates.

  Polymorphism and allotropy

The same group of atoms can often solidify in many different ways. Polymorphism is the ability of a solid to exist in more than one crystal form. For example, water ice is ordinarily found in the hexagonal form Ice Ih, but can also exist as the cubic Ice Ic, the rhombohedral ice II, and many other forms. The different polymorphs are usually called different phases.

In addition, the same atoms may be able to form noncrystalline phases. For example, water can also form amorphous ice, while SiO2 can form both fused silica (an amorphous glass) and quartz (a crystal). Likewise, if a substance can form crystals, it can also form polycrystals.

For pure chemical elements, polymorphism is known as allotropy. For example, diamond and graphite are two crystalline forms of carbon, while amorphous carbon is a noncrystalline form. Polymorphs, despite having the same atoms, may have wildly different properties. For example, diamond is among the hardest substances known, while graphite is so soft that it is used as a lubricant.

Polyamorphism is a similar phenomenon where the same atoms can exist in more than one amorphous solid form.

  Crystallization

  Vertical cooling crystallizer in a beet sugar factory

Crystallization is the process of forming a crystalline structure from a fluid or from materials dissolved in a fluid. (More rarely, crystals may be deposited directly from gas; see thin-film deposition and epitaxy.)

Crystallization is a complex and extensively-studied field, because depending on the conditions, a single fluid can solidify into many different possible forms. It can form a single crystal, perhaps with various possible phases, stoichiometries, impurities, defects, and habits. Or, it can form a polycrystal, with various possibilities for the size, arrangement, orientation, and phase of its grains. The final form of the solid is determined by the conditions under which the fluid is being solidified, such as the chemistry of the fluid, the ambient pressure, the temperature, and the speed with which all these parameters are changing.

Specific industrial techniques to produce large single crystals (called boules) include the Czochralski process and the Bridgman technique. Other less exotic methods of crystallization may be used, depending on the physical properties of the substance, including hydrothermal synthesis, sublimation, or simply solvent-based crystallization.

Large single crystals can be created by geological processes. For example, selenite crystals in excess of 10 meters are found in the Cave of the Crystals in Naica, Mexico.[6] For more details on geological crystal formation, see above.

Crystals can also be formed by biological processes, see above. Conversely, some organisms have special techniques to prevent crystallization from occurring, such as antifreeze proteins.

  Defects, impurities, and twinning

  Two types of crystallographic defects. Top right: edge dislocation. Bottom right: screw dislocation.
  Twinned pyrite crystal group

An ideal crystal has every atom in a perfect, exactly repeating pattern. However, in reality, most crystalline materials have a variety of crystallographic defects, places where the crystal's pattern is interrupted. The types and structures of these defects may have a profound effect on the properties of the materials.

A few examples of crystallographic defects include vacancy defects (an empty space where an atom should fit), interstitial defects (an extra atom squeezed in where it does not fit), and dislocations (see figure at right). Dislocations are especially important in materials science, because they help determine the mechanical strength of materials.

Another common type of crystallographic defect is an impurity, meaning that the "wrong" type of atom is present in a crystal. For example, a perfect crystal of diamond would only contain carbon atoms, but a real crystal might perhaps contain a few boron atoms as well. These boron impurities change the diamond's color to slightly blue. Likewise, the only difference between ruby and sapphire is the type of impurities present in a corundum crystal.

In semiconductors, a special type of impurity, called a dopant, drastically changes the crystal's electrical properties. Semiconductor devices, such as transistors, are made possible largely by putting different semiconductor dopants into different places, in specific patterns.

Twinning is a phenomenon somewhere between a crystallographic defect and a grain boundary. Like a grain boundary, a twin boundary has different crystal orientations on its two sides. But unlike a grain boundary, the orientations are not random, but related in a specific, mirror-image way.

  Chemical bonds

Crystalline structures occur in all classes of materials, with all types of chemical bonds. Almost all metal exists in a polycrystalline state; amorphous or single-crystal metals must be produced synthetically, often with great difficulty. Ionically bonded crystals can form upon solidification of salts, either from a molten fluid or upon crystallization from a solution. Covalently bonded crystals are also very common, notable examples being diamond, silica, and graphite. Polymer materials generally will form crystalline regions, but the lengths of the molecules usually prevent complete crystallization. Weak van der Waals forces can also play a role in a crystal structure; for example, this type of bonding loosely holds together the hexagonal-patterned sheets in graphite.

  Properties

Crystal Particles Attractive forces Melting point Other properties
Ionic Positive and negative ions Electrostatic attractions High Hard, brittle, good electrical conductor in molten state
Molecular Polar molecules London force and dipole-dipole attraction Low Soft, non-conductor or extremely poor conductor of electricity in liquid state
Molecular Non-polar molecules London force Low Soft conductor

  Quasicrystals

  The material Ho-Mg-Zn forms quasicrystals, which can take on the macroscopic shape of a dodecahedron. (Only a quasicrystal, not a normal crystal, can take this shape.) The edges are 2mm long.

A quasicrystal consists of arrays of atoms that are ordered but not strictly periodic. They have many attributes in common with ordinary crystals, such as displaying a discrete pattern in x-ray diffraction, and the ability to form shapes with smooth, flat faces.

Quasicrystals are most famous for their ability to show five-fold symmetry, which is impossible for an ordinary periodic crystal (see crystallographic restriction theorem).

The International Union of Crystallography has redefined the term "crystal" to include both ordinary periodic crystals and quasicrystals ("any solid having an essentially discrete diffraction diagram"[7]).

Quasicrystals, first discovered in 1982, are quite rare in practice. Only about 100 solids are known to form quasicrystals, compared to about 400,000 periodic crystals measured to date.[8] The 2011 Nobel Prize in Chemistry was awarded to Dan Shechtman for the discovery of quasicrystals.[9]

  Special properties from anisotropy

Crystals can have certain special electrical, optical, and mechanical properties that glass and polycrystals normally cannot. These properties are related to the anisotropy of the crystal, i.e. the lack of rotational symmetry in its atomic arrangement. One such property is the piezoelectric effect, where a voltage across the crystal can shrink or stretch it. Another is birefringence, where a double image appears when looking through a crystal. Moreover, various properties of a crystal, including electrical conductivity, electrical permittivity, and Young's modulus, may be different in different directions in a crystal. For example, graphite crystals consist of a stack of sheets, and although each individual sheet is mechanically very strong, the sheets are rather loosely bound to each other. Therefore, the mechanical strength of the material is quite different depending on the direction of stress.

Not all crystals have all of these properties. Conversely, these properties are not quite exclusive to crystals. They can appear in glasses or polycrystals that have been made anisotropic by working or stress--for example, stress-induced birefringence.

  Crystallography

Crystallography is the science of measuring the crystal structure (in other words, the atomic arrangement) of a crystal. One widely-used crystallography technique is X-ray diffraction. Large numbers of known crystal structures are stored in crystallographic databases.

  Gallery

  See also

  References

  1. ^ κρύσταλλος, Henry George Liddell, Robert Scott, A Greek-English Lexicon, on Perseus Digital Library
  2. ^ κρύος, Henry George Liddell, Robert Scott, A Greek-English Lexicon, on Perseus Digital Library
  3. ^ "Kreus". The American Heritage Dictionary of the English Language: Fourth Edition: Appendix I: Indo-European Roots. 2000. http://www.bartleby.com/61/roots/IE243.html. 
  4. ^ The surface science of metal oxides, by Victor E. Henrich, P. A. Cox, page 28, google books link
  5. ^  This article incorporates text from a publication now in the public domainChisholm, Hugh, ed. (1911). "Petrology". Encyclopædia Britannica (11th ed.). Cambridge University Press. 
  6. ^ National Geographic, 2008. Cavern of Crystal Giants
  7. ^ International Union of Crystallography (1992). "Report of the Executive Committee for 1991". Acta Cryst. A48: 922. DOI:10.1107/S0108767392008328. 
  8. ^ Steurer W. (2004). "Twenty years of structure research on quasicrystals. Part I. Pentagonal, octagonal, decagonal and dodecagonal quasicrystals". Z. Kristallogr. 219 (7–2004): 391–446. DOI:10.1524/zkri.219.7.391.35643. 
  9. ^ "The Nobel Prize in Chemistry 2011". Nobelprize.org. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2011/. Retrieved 2011-12-29. 

  Further reading

  External links

   
               

 

Toutes les traductions de crystal


Contenu de sensagent

  • définitions
  • synonymes
  • antonymes
  • encyclopédie

dictionnaire et traducteur pour sites web

Alexandria

Une fenêtre (pop-into) d'information (contenu principal de Sensagent) est invoquée un double-clic sur n'importe quel mot de votre page web. LA fenêtre fournit des explications et des traductions contextuelles, c'est-à-dire sans obliger votre visiteur à quitter votre page web !

Essayer ici, télécharger le code;

SensagentBox

Avec la boîte de recherches Sensagent, les visiteurs de votre site peuvent également accéder à une information de référence pertinente parmi plus de 5 millions de pages web indexées sur Sensagent.com. Vous pouvez Choisir la taille qui convient le mieux à votre site et adapter la charte graphique.

Solution commerce électronique

Augmenter le contenu de votre site

Ajouter de nouveaux contenus Add à votre site depuis Sensagent par XML.

Parcourir les produits et les annonces

Obtenir des informations en XML pour filtrer le meilleur contenu.

Indexer des images et définir des méta-données

Fixer la signification de chaque méta-donnée (multilingue).


Renseignements suite à un email de description de votre projet.

Jeux de lettres

Les jeux de lettre français sont :
○   Anagrammes
○   jokers, mots-croisés
○   Lettris
○   Boggle.

Lettris

Lettris est un jeu de lettres gravitationnelles proche de Tetris. Chaque lettre qui apparaît descend ; il faut placer les lettres de telle manière que des mots se forment (gauche, droit, haut et bas) et que de la place soit libérée.

boggle

Il s'agit en 3 minutes de trouver le plus grand nombre de mots possibles de trois lettres et plus dans une grille de 16 lettres. Il est aussi possible de jouer avec la grille de 25 cases. Les lettres doivent être adjacentes et les mots les plus longs sont les meilleurs. Participer au concours et enregistrer votre nom dans la liste de meilleurs joueurs ! Jouer

Dictionnaire de la langue française
Principales Références

La plupart des définitions du français sont proposées par SenseGates et comportent un approfondissement avec Littré et plusieurs auteurs techniques spécialisés.
Le dictionnaire des synonymes est surtout dérivé du dictionnaire intégral (TID).
L'encyclopédie française bénéficie de la licence Wikipedia (GNU).

Copyright

Les jeux de lettres anagramme, mot-croisé, joker, Lettris et Boggle sont proposés par Memodata.
Le service web Alexandria est motorisé par Memodata pour faciliter les recherches sur Ebay.
La SensagentBox est offerte par sensAgent.

Traduction

Changer la langue cible pour obtenir des traductions.
Astuce: parcourir les champs sémantiques du dictionnaire analogique en plusieurs langues pour mieux apprendre avec sensagent.

 

8173 visiteurs en ligne

calculé en 0,062s


Je voudrais signaler :
section :
une faute d'orthographe ou de grammaire
un contenu abusif (raciste, pornographique, diffamatoire)
une violation de copyright
une erreur
un manque
autre
merci de préciser :