Mon compte

connexion

inscription

   Publicité D▼


 » 
allemand anglais arabe bulgare chinois coréen croate danois espagnol espéranto estonien finnois français grec hébreu hindi hongrois islandais indonésien italien japonais letton lituanien malgache néerlandais norvégien persan polonais portugais roumain russe serbe slovaque slovène suédois tchèque thai turc vietnamien
allemand anglais arabe bulgare chinois coréen croate danois espagnol espéranto estonien finnois français grec hébreu hindi hongrois islandais indonésien italien japonais letton lituanien malgache néerlandais norvégien persan polonais portugais roumain russe serbe slovaque slovène suédois tchèque thai turc vietnamien

Significations et usages de gradient

Définition

gradient (n.)

1.the property possessed by a line or surface that departs from the horizontal"a five-degree gradient"

2.a graded change in the magnitude of some physical quantity or dimension

3.the gradient of a slope or road or other surface"the road had a steep grade"

   Publicité ▼

Merriam Webster

GradientGra"di*ent (?), a. [L. gradiens, p. pr. of gradi to step, to go. See Grade.]
1. Moving by steps; walking; as, gradient automata. Wilkins.

2. Rising or descending by regular degrees of inclination; as, the gradient line of a railroad.

3. Adapted for walking, as the feet of certain birds.

   Publicité ▼

Définition (complément)

⇨ voir la définition de Wikipedia

Synonymes

gradient (n.)

grade, slant, slope, tilt

Locutions

Adverse pressure gradient • Alternating Gradient Synchrotron • Alveolar-arterial gradient • Biconjugate gradient stabilized method • Color gradient • Conjugate gradient • Conjugate gradient method • Density gradient • Drainage gradient • Electric field gradient • Electrochemical gradient • Electrochemical ion gradient • Environmental gradient • Equilibrium gradient centrifugation • Four-gradient • Geothermal gradient • Gradient (disambiguation) • Gradient Analytics • Gradient analysis • Gradient conjecture • Gradient copolymers • Gradient descent • Gradient enhanced NMR spectroscopy • Gradient method • Gradient network • Gradient noise • Gradient pattern analysis • Gradient well-formedness • Gradient wellformedness • Gradient-index optics • Gradient-related • Gravity gradient • Gravity-gradient stabilization • Heat gradient • Hydraulic gradient • Image gradient • Immobilized pH gradient • Loss of Strength Gradient • Multicolumn countercurrent solvent gradient purification • Pore pressure gradient • Potential gradient • Pressure gradient • Pressure-gradient force • Pulsed field gradient • Reduced gradient bubble model • Ruling gradient • Serum-ascites albumin gradient • Sound speed gradient • Standing gradient osmosis • Stochastic gradient descent • Stream gradient • Sucrose gradient centrifugation • Surface gradient • Temperature gradient • Temperature gradient gel electrophoresis • Texture gradient • Thermal gradient • Trans-tubular potassium gradient • Wind gradient

Dictionnaire analogique


gradient (n.)

change[Hyper.]



Wikipedia

Gradient

                   
  In the above two images, the scalar field is in black and white, black representing higher values, and its corresponding gradient is represented by blue arrows.

In vector calculus, the gradient of a scalar field is a vector field that points in the direction of the greatest rate of increase of the scalar field, and whose magnitude is that rate of increase.

A generalization of the gradient for functions on a Euclidean space that have values in another Euclidean space is the Jacobian. A further generalization for a function from one Banach space to another is the Fréchet derivative.

Contents

  Interpretations

  Gradient of the 2-d function f(x,y)= xe^{-x^2 - y^2} is plotted as blue arrows over the pseudocolor plot of the function

Consider a room in which the temperature is given by a scalar field, T, so at each point (x,y,z) the temperature is T(x,y,z). (We will assume that the temperature does not change over time.) At each point in the room, the gradient of T at that point will show the direction the temperature rises most quickly. The magnitude of the gradient will determine how fast the temperature rises in that direction.

Consider a surface whose height above sea level at a point (x, y) is H(x, y). The gradient of H at a point is a vector pointing in the direction of the steepest slope or grade at that point. The steepness of the slope at that point is given by the magnitude of the gradient vector.

The gradient can also be used to measure how a scalar field changes in other directions, rather than just the direction of greatest change, by taking a dot product. Suppose that the steepest slope on a hill is 40%. If a road goes directly up the hill, then the steepest slope on the road will also be 40%. If, instead, the road goes around the hill at an angle, then it will have a shallower slope. For example, if the angle between the road and the uphill direction, projected onto the horizontal plane, is 60°, then the steepest slope along the road will be 20%, which is 40% times the cosine of 60°.

This observation can be mathematically stated as follows. If the hill height function H is differentiable, then the gradient of H dotted with a unit vector gives the slope of the hill in the direction of the vector. More precisely, when H is differentiable, the dot product of the gradient of H with a given unit vector is equal to the directional derivative of H in the direction of that unit vector.

  Definition

  The gradient of the function f(x,y) = −(cos2x + cos2y)2 depicted as a projected vector field on the bottom plane

The gradient (or gradient vector field) of a scalar function f(x_1, x_2, x_3, \dots, x_n) is denoted \nabla f or \vec{\nabla} f where \nabla (the nabla symbol) denotes the vector differential operator, del. The notation \operatorname{grad}(f) is also commonly used for the gradient. The gradient of f is defined as the unique vector field whose dot product with any unit vector v at each point x is the directional derivative of f along v. That is,

(\nabla f(x))\cdot \mathbf{v} = D_{\mathbf v}f(x).

In a rectangular coordinate system, the gradient is the vector field whose components are the partial derivatives of f:

 \nabla f  = \frac{\partial f}{\partial x_1 }\mathbf{e}_1 + \cdots + \frac{\partial f}{\partial x_n }\mathbf{e}_n

where the ei are the orthogonal unit vectors pointing in the coordinate directions. When a function also depends on a parameter such as time, the gradient often refers simply to the vector of its spatial derivatives only.

In the three-dimensional Cartesian coordinate system, this is given by

\frac{\partial f}{\partial x} \mathbf{i} +
\frac{\partial f}{\partial y}  \mathbf{j} +
\frac{\partial f}{\partial z} \mathbf{k}

where \mathbf i,\mathbf j, \mathbf k are the standard unit vectors. For example, the gradient of the function

f(x,y,z)= \ 2x+3y^2-\sin(z)

is:

\nabla f= 
\frac{\partial f}{\partial x} \mathbf{i} +
\frac{\partial f}{\partial y} \mathbf{j} +
\frac{\partial f}{\partial z} \mathbf{k}
 = 2\mathbf{i}+ 6y\mathbf{j} -\cos(z)\mathbf{k}.

In some applications it is customary to represent the gradient as a row vector or column vector of its components in a rectangular coordinate system.

  Gradient and the derivative or differential

  Linear approximation to a function

The gradient of a function f from the Euclidean space \mathbb{R}^n to \mathbb{R} at any particular point x0 in \mathbb{R}^n characterizes the best linear approximation to f at x0. The approximation is as follows:  f(x) \approx f(x_0) + (\nabla f)_{x_0}\cdot(x-x_0) for x close to x_0, where (\nabla f)_{x_0} is the gradient of f computed at x_0, and the dot denotes the dot product on \mathbb{R}^n. This equation is equivalent to the first two terms in the multi-variable Taylor Series expansion of f at x0.

  Differential or (exterior) derivative

The best linear approximation to a function f: \mathbb{R}^n \to \mathbb{R} at a point x in \mathbb{R}^n is a linear map from \mathbb{R}^n to \mathbb{R} which is often denoted by \mathrm{d}f_x or Df(x) and called the differential or (total) derivative of f at x. The gradient is therefore related to the differential by the formula  (\nabla f)_x\cdot v = \mathrm d f_x(v) for any v \in \mathbb{R}^n. The function \mathrm{d}f, which maps x to \mathrm{d}f_x, is called the differential or exterior derivative of f and is an example of a differential 1-form.

If \mathbb{R}^n is viewed as the space of (length n) column vectors (of real numbers), then one can regard \mathrm{d}f as the row vector

 \mathrm{d}f = \left( \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)

so that \mathrm{d}f_x(v) is given by matrix multiplication. The gradient is then the corresponding column vector, i.e., \nabla f = \mathrm{d} f^T.

  Gradient as a derivative

Let U be an open set in Rn. If the function f:U → R is differentiable, then the differential of f is the (Fréchet) derivative of f. Thus \nabla f is a function from U to the space R such that

\lim_{h\to 0} \frac{\|f(x+h)-f(x) -\nabla f(x)\cdot h\|}{\|h\|} = 0

where • is the dot product.

As a consequence, the usual properties of the derivative hold for the gradient:

Linearity

The gradient is linear in the sense that if f and g are two real-valued functions differentiable at the point aRn, and α and β are two constants, then αfg is differentiable at a, and moreover

\nabla\left(\alpha f+\beta g\right)(a) = \alpha \nabla f(a) + \beta\nabla g (a).
Product rule

If f and g are real-valued functions differentiable at a point aRn, then the product rule asserts that the product (fg)(x) = f(x)g(x) of the functions f and g is differentiable at a, and

\nabla (fg)(a) = f(a)\nabla g(a) + g(a)\nabla f(a).
Chain rule

Suppose that f:AR is a real-valued function defined on a subset A of Rn, and that f is differentiable at a point a. There are two forms of the chain rule applying to the gradient. First, suppose that the function g is a parametric curve; that is, a function g : IRn maps a subset IR into Rn. If g is differentiable at a point cI such that g(c) = a, then

(f\circ g)'(c) = \nabla f(a)\cdot g'(c),

where \circ is the composition operator. More generally, if instead IRk, then the following holds:

\nabla (f\circ g)(c) = (\nabla f(a)) (Dg(c))^T

where (Dg)T denotes the transpose Jacobian matrix.

For the second form of the chain rule, suppose that h : IR is a real valued function on a subset I of R, and that h is differentiable at the point c = f(a) ∈ I. Then

\nabla (h\circ f)(a) = h'(c)\nabla f(a).

  Further properties and applications

  Level sets

If the partial derivatives of f are continuous, then the dot product (\nabla f)_x\cdot v of the gradient at a point x with a vector v gives the directional derivative of f at x in the direction v. It follows that in this case the gradient of f is orthogonal to the level sets of f. For example, a level surface in three-dimensional space is defined by an equation of the form F(xyz) = c. The gradient of F is then normal to the surface.

More generally, any embedded hypersurface in a Riemannian manifold can be cut out by an equation of the form F(P) = 0 such that dF is nowhere zero. The gradient of F is then normal to the hypersurface.

Let us consider a function f at a point P. If we draw a surface through this point P and the function has the same value at all points on this surface,then this surface is called a 'level surface'.

  Conservative vector fields and the gradient theorem

The gradient of a function is called a gradient field. A (continuous) gradient field is always a conservative vector field: its line integral along any path depends only on the endpoints of the path, and can be evaluated by the gradient theorem (the fundamental theorem of calculus for line integrals). Conversely, a (continuous) conservative vector field is always the gradient of a function.

  Riemannian manifolds

For any smooth function f on a Riemannian manifold (M,g), the gradient of f is the vector field \nabla f such that for any vector field X,

g(\nabla f, X) = \partial_X f, \qquad \text{i.e.,}\quad g_x((\nabla f)_x, X_x ) = (\partial_X f) (x)

where g_x( \cdot, \cdot ) denotes the inner product of tangent vectors at x defined by the metric g and \partial_X f (sometimes denoted X(f)) is the function that takes any point xM to the directional derivative of f in the direction X, evaluated at x. In other words, in a coordinate chart \varphi from an open subset of M to an open subset of Rn, (\partial_X f)(x) is given by:

\sum_{j=1}^n X^{j} (\varphi(x)) \frac{\partial}{\partial x_{j}}(f \circ \varphi^{-1}) \Big|_{\varphi(x)},

where Xj denotes the jth component of X in this coordinate chart.

So, the local form of the gradient takes the form:

 \nabla f= g^{ik}\frac{\partial f}{\partial x^{k}}\frac{\partial}{\partial x^{i}}.

Generalizing the case M=Rn, the gradient of a function is related to its exterior derivative, since (\partial_X f) (x) = df_x(X_x). More precisely, the gradient \nabla f is the vector field associated to the differential 1-form df using the musical isomorphism \sharp=\sharp^g\colon T^*M\to TM (called "sharp") defined by the metric g. The relation between the exterior derivative and the gradient of a function on Rn is a special case of this in which the metric is the flat metric given by the dot product.

  Cylindrical and spherical coordinates

In cylindrical coordinates, the gradient is given by (Schey 1992, pp. 139–142):

\nabla f(\rho, \phi, z) = 
\frac{\partial f}{\partial \rho}\mathbf{e}_\rho+
\frac{1}{\rho}\frac{\partial f}{\partial \phi}\mathbf{e}_\phi+
\frac{\partial f}{\partial z}\mathbf{e}_z

where \phi is the azimuthal angle, z is the axial coordinate, and eρ, eφ and ez are unit vectors pointing along the coordinate directions.

In spherical coordinates (Schey 1992, pp. 139–142):

\nabla f(r, \theta, \phi) = 
\frac{\partial f}{\partial r}\mathbf{e}_r+
\frac{1}{r}\frac{\partial f}{\partial \theta}\mathbf{e}_\theta+
\frac{1}{r \sin\theta}\frac{\partial f}{\partial \phi}\mathbf{e}_\phi

where \phi is the azimuth angle and \theta is the zenith angle.

For the gradient in other orthogonal coordinate systems, see Orthogonal coordinates#Differential operators in three dimensions.

  Gradient of a vector

In rectangular coordinates, the gradient of a vector \mathbf{f}=({{f}_{1}},{{f}_{2}},{{f}_{3}}) is defined by \nabla \mathbf{f}=\frac{\partial {{f}_{i}}}{\partial {{x}_{j}}}{{\mathbf{e}}_{i}}{{\mathbf{e}}_{j}}

or the Jacobian matrix \frac{\partial ({{f}_{1}},{{f}_{2}},{{f}_{3}})}{\partial ({{x}_{1}},{{x}_{2}},{{x}_{3}})}.

In curvilinear coordinates, the gradient involves Christoffel symbols.

  See also

  References

  • Korn, Theresa M.; Korn, Granino Arthur (2000), Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review, New York: Dover Publications, pp. 157–160, ISBN 0-486-41147-8, OCLC 43864234 .
  • Dubrovin, B.A.; A.T. Fomenko, S.P. Novikov (1991), Modern Geometry--Methods and Applications: Part I: The Geometry of Surfaces, Transformation Groups, and Fields (Graduate Texts in Mathematics) (2nd ed.), Springer, pp. 14–17, ISBN 978-0-387-97663-1 

  External links

   
               

 

Toutes les traductions de gradient


Contenu de sensagent

  • définitions
  • synonymes
  • antonymes
  • encyclopédie

dictionnaire et traducteur pour sites web

Alexandria

Une fenêtre (pop-into) d'information (contenu principal de Sensagent) est invoquée un double-clic sur n'importe quel mot de votre page web. LA fenêtre fournit des explications et des traductions contextuelles, c'est-à-dire sans obliger votre visiteur à quitter votre page web !

Essayer ici, télécharger le code;

SensagentBox

Avec la boîte de recherches Sensagent, les visiteurs de votre site peuvent également accéder à une information de référence pertinente parmi plus de 5 millions de pages web indexées sur Sensagent.com. Vous pouvez Choisir la taille qui convient le mieux à votre site et adapter la charte graphique.

Solution commerce électronique

Augmenter le contenu de votre site

Ajouter de nouveaux contenus Add à votre site depuis Sensagent par XML.

Parcourir les produits et les annonces

Obtenir des informations en XML pour filtrer le meilleur contenu.

Indexer des images et définir des méta-données

Fixer la signification de chaque méta-donnée (multilingue).


Renseignements suite à un email de description de votre projet.

Jeux de lettres

Les jeux de lettre français sont :
○   Anagrammes
○   jokers, mots-croisés
○   Lettris
○   Boggle.

Lettris

Lettris est un jeu de lettres gravitationnelles proche de Tetris. Chaque lettre qui apparaît descend ; il faut placer les lettres de telle manière que des mots se forment (gauche, droit, haut et bas) et que de la place soit libérée.

boggle

Il s'agit en 3 minutes de trouver le plus grand nombre de mots possibles de trois lettres et plus dans une grille de 16 lettres. Il est aussi possible de jouer avec la grille de 25 cases. Les lettres doivent être adjacentes et les mots les plus longs sont les meilleurs. Participer au concours et enregistrer votre nom dans la liste de meilleurs joueurs ! Jouer

Dictionnaire de la langue française
Principales Références

La plupart des définitions du français sont proposées par SenseGates et comportent un approfondissement avec Littré et plusieurs auteurs techniques spécialisés.
Le dictionnaire des synonymes est surtout dérivé du dictionnaire intégral (TID).
L'encyclopédie française bénéficie de la licence Wikipedia (GNU).

Copyright

Les jeux de lettres anagramme, mot-croisé, joker, Lettris et Boggle sont proposés par Memodata.
Le service web Alexandria est motorisé par Memodata pour faciliter les recherches sur Ebay.
La SensagentBox est offerte par sensAgent.

Traduction

Changer la langue cible pour obtenir des traductions.
Astuce: parcourir les champs sémantiques du dictionnaire analogique en plusieurs langues pour mieux apprendre avec sensagent.

 

5398 visiteurs en ligne

calculé en 0,063s


Je voudrais signaler :
section :
une faute d'orthographe ou de grammaire
un contenu abusif (raciste, pornographique, diffamatoire)
une violation de copyright
une erreur
un manque
autre
merci de préciser :