Mon compte

connexion

inscription

   Publicité R▼


 » 
allemand anglais arabe bulgare chinois coréen croate danois espagnol espéranto estonien finnois français grec hébreu hindi hongrois islandais indonésien italien japonais letton lituanien malgache néerlandais norvégien persan polonais portugais roumain russe serbe slovaque slovène suédois tchèque thai turc vietnamien
allemand anglais arabe bulgare chinois coréen croate danois espagnol espéranto estonien finnois français grec hébreu hindi hongrois islandais indonésien italien japonais letton lituanien malgache néerlandais norvégien persan polonais portugais roumain russe serbe slovaque slovène suédois tchèque thai turc vietnamien

Significations et usages de speckled

speckled

  • past participle of speckle (verb)
  • past indicative (I,you,he,she,it,we,they) of speckle (verb)

Définition

speckled (adj.)

1.having sections or patches colored differently and usually brightly"a jester dressed in motley" "the painted desert" "a particolored dress" "a piebald horse" "pied daisies"

2.having a pattern of dots

speckle (n.)

1.a small contrasting part of something"a bald spot" "a leopard's spots" "a patch of clouds" "patches of thin ice" "a fleck of red"

speckle (v.)

1.mark with small spots"speckle the wall with tiny yellow spots"

2.produce a mottled effect"The sunlight stippled the trees"

   Publicité ▼

Merriam Webster

SpeckledSpec"kled (?), a. Marked or variegated with small spots of a different color from that of the rest of the surface.

Speckled Indians (Ethnol.), the Pintos. -- Speckled trout. (Zoöl.) (a) The common American brook trout. See Trout. (b) The rainbow trout.

SpeckleSpec"kle (?), n. [Dim. of speck; cf. D. spikkel.] A little or spot in or anything, of a different substance or color from that of the thing itself.

An huge great serpent, all with speckles pied. Spebser.

SpeckleSpec"kle, v. t. [imp. & p. p. Speckled (?); p. pr. & vb. n. Speckling (?).] To mark with small spots of a different color from that of the rest of the surface; to variegate with spots of a different color from the ground or surface.

   Publicité ▼

Définition (complément)

⇨ voir la définition de Wikipedia

Synonymes

speckle (v.)

bespeckle, fleck, spot, stipple

Voir aussi

speckle (n.)

cloud, dapple, mottle, speck

Locutions

Angel de la Guarda Island speckled rattlesnake • Beulah Speckled Face • Black-speckled • Black-speckled palm-pitviper • Blue-speckled nudibranch • El Muerto Island speckled rattlesnake • Five Green and Speckled Frogs • Five little speckled frogs • Grass Valley speckled dace • Great Speckled Bird (album) • Great Speckled Bird (band) • Indonesian speckled carpetshark • Old Speckled Hen • Southwestern speckled rattlesnake • Speckled Alder • Speckled Antshrike • Speckled Bird • Speckled Cape Tortoise • Speckled Chachalaca • Speckled Crake • Speckled Dasyure • Speckled Earless Lizard • Speckled Goats II • Speckled Hawk Owl • Speckled Hawk-owl • Speckled Hummingbird • Speckled Kingsnake • Speckled Mountain • Speckled Mourner • Speckled Mousebird • Speckled Padloper Tortoise • Speckled Piculet • Speckled Pigeon • Speckled Red • Speckled Skink • Speckled Snake • Speckled Spinetail • Speckled Spiny Tree-rat • Speckled Tanager • Speckled Teal • Speckled Tinkerbird • Speckled Trout Creek • Speckled Warbler • Speckled Wood • Speckled Wood Pigeon • Speckled Wood-pigeon • Speckled Woodpigeon • Speckled alder • Speckled bush-cricket • Speckled butterflyfish • Speckled carpetshark • Speckled catshark • Speckled dace • Speckled damsel • Speckled day gecko • Speckled forest-pitviper • Speckled ground squirrel • Speckled hind • Speckled lentiginous nevus • Speckled longfin eel • Speckled moray • Speckled palm viper • Speckled pit viper • Speckled pocketbook • Speckled puffer • Speckled rattlesnake • Speckled sanddab • Speckled sea trout • Speckled seatrout • Speckled smooth-hound • Speckled sole • Speckled swellshark • Speckled tonguesole • Speckled trout • Speckled weak fish • Speckled weakfish • Tawny Speckled Pug • Tenerife Speckled Lizard • The Adventure of the Speckled Band • The Great Speckled Bird • The Great Speckled Bird (newspaper) • The Great Speckled Bird (song) • The Speckled Band • The Speckled Band (1931 film) • The speckled band • White-speckled • White-speckled Laughingthrush • Zosteriform speckled lentiginous nevus

Dictionnaire analogique

Wikipedia

Speckle pattern

From Wikipedia, the free encyclopedia

  (Redirected from Speckle)
Jump to: navigation, search
Laser speckle on a digital camera image from a green laser pointer. This is a subjective speckle pattern.

A speckle pattern is a random intensity pattern produced by the mutual interference of a set of wavefronts. This phenomenon has been investigated by scientists since the time of Newton, but speckles have come into prominence since the invention of the laser and have now found a variety of applications.

Contents

Occurrence in outer space

A familiar example is the random pattern created when a laser beam is scattered off a rough surface - see picture. A less familiar example of speckle is the highly magnified image of a star through imperfect optics or through the atmosphere (see speckle imaging). A speckle pattern can also be seen when sunlight is scattered by a fingernail.

The speckle effect is observed when radio waves are scattered from rough surfaces such as ground or sea, and can also be found in ultrasonic imaging. In the output of a multimode optical fiber, a speckle pattern results from a superposition of mode field patterns. If the relative modal group velocities change with time, the speckle pattern will also change with time. If differential mode attenuation occurs, modal noise results.[1]

Explanation

The speckle effect is a result of the interference of many waves, having different phases, which add together to give a resultant wave whose amplitude, and therefore intensity, varies randomly. If each wave is modelled by a vector, then it can be seen that if a number of vectors with random angles are added together, the length of the resulting vector can be anything from zero to the sum of the individual vector lengths—a 2-dimensional random walk, sometimes known as a drunkard's walk.

When a surface is illuminated by a light wave, according to diffraction theory, each point on an illuminated surface acts as a source of secondary spherical waves. The light at any point in the scattered light field is made up of waves which have been scattered from each point on the illuminated surface. If the surface is rough enough to create path-length differences exceeding one wavelength, giving rise to phase changes greater than 2π, the amplitude, and hence the intensity, of the resultant light varies randomly.

If light of low coherence (i.e. made up of many wavelengths) is used, a speckle pattern will not normally be observed, because the speckle patterns produced by individual wavelengths have different dimensions and will normally average one another out. However, speckle patterns can be observed in polychromatic light in some conditions.[2]

Subjective speckles

When an image is formed of a rough surface which is illuminated by a coherent light (e.g. a laser beam), a speckle pattern is observed in the image plane; this is called a “subjective speckle pattern” - see image above. It is called "subjective" because the detailed structure of the speckle pattern depends on the viewing system parameters; for instance, if the size of the lens aperture changes, the size of the speckles change. If the position of the imaging system is altered, the pattern will gradually change and will eventually be unrelated to the original speckle pattern.

This can be explained as follows. Each point in the image can be considered to be illuminated by a finite area in the object. The size of this area is determined by the diffraction-limited resolution of the lens which is given by the Airy disk whose diameter is 2.4λu/D where u is distance between the object and the lens, and D is the diameter of the lens aperture. (This is a simplified model of diffraction-limited imaging).

The light at neighbouring points in the image has been scattered from areas which have many points in common and the intensity of two such points will not differ much. However, two points in the image which are illuminated by areas in the object which are separated by the diameter of the Airy disk, have light intensities which are unrelated. This corresponds to a distance in the image of 2.4λv/D where v is the distance between the lens and the image. Thus, the ‘size’ of the speckles in the image is of this order.

The change in speckle size with lens aperture can be observed by looking at a laser spot on a wall directly, and then through a very small hole. The speckles will be seen to increase significantly in size.

Objective speckles

A photograph of an objective speckle pattern. This is the light field formed when a laser beam was scattered from a plastic surface onto a wall.
When laser light which has been scattered off a rough surface falls on another surface, it forms an “objective speckle pattern”. If a photographic plate or another 2-D optical sensor is located within the scattered light field without a lens, a speckle pattern is obtained whose characteristics depend on the geometry of the system and the wavelength of the laser. The speckle pattern in the figure was obtained by pointing a laser beam at the surface of a mobile phone so that the scattered light fell onto an adjacent wall. A photograph was then taken of the speckle pattern formed on the wall (strictly speaking, this also has a second subjective speckle pattern but its dimensions are much smaller than the objective pattern so it is not seen in the image)

The light at a given point in the speckle pattern is made up of contributions from the whole of the scattering surface. The relative phases of these waves vary across the surface, so that the sum of the individual waves varies randomly. The pattern is the same regardless of how it is imaged, just as if it were a painted pattern.

The "size" of the speckles is a function of the wavelength of the light, the size of the laser beam which illuminates the first surface, and the distance between this surface and the surface where the speckle pattern is formed. This is the case because when the angle of scattering changes such that the relative path difference between light scattered from the centre of the illuminated area compared with light scattered from the edge of the illuminated changes by λ, the intensity becomes uncorrelated. Dainty [3] derives an expression for the mean speckle size as λz/L where L is the width of the illuminated area and z is the distance between the object and the location of the speckle pattern.

Near-field speckles

Objective speckles are usually obtained in the far field (also called Fraunhofer region, thatis the zone where Fraunhofer diffraction happens). This means that they are generated "far" from the object that emits or scatters light. Speckles can be observed also close to thescattering object, in the near field (also called Fresnel region, that is, the region where Fresnel diffraction happens). This kind of speckles are called Near Field Speckles. See near and far field for a more rigorous definition of "near" and "far".

The statistical properties of a far-field speckle pattern (i.e., the speckle form and dimension)depend on the form and dimension of the region hit by laser light.By contrast, a very interesting feature of near field speckles is thattheir statistical properties are closely related to the form and structure of the scattering object:objects that scatter at high angles generate small near field speckles, and vice versa.Under Rayleigh-Gans condition, in particular, speckle dimension mirrors the average dimensionof the scattering objects, while, in general, the statistical properties of near fieldspeckles generated by a sampledepend on the light scattering distribution. [4] [5]

Actually, the condition under which the near field speckles appear has beendescribed as more strict than the usual Fresnel condition: see[6]

Applications

When lasers were first invented, the speckle effect was considered to be a severe drawback in using lasers to illuminate objects, particularly in holographic imaging because of the grainy image produced. It was later realized that speckle patterns could carry information about the object's surface deformations, and this effect is exploited in holographic interferometry and electronic speckle pattern interferometry. The speckle effect is also used in stellar speckle astronomy, speckle imaging and in eye testing using speckle.

Speckle is the chief limitation of coherent imaging in optical heterodyne detection.

In the case of near field speckles, the statistical properties depend on the light scatteringdistribution of a given sample. This allows to use the near field speckles analysisas a way to detect the scattering distribution; this is the so-called near-field scatteringtechnique [7].

Reduction

Speckle is considered to be a problem in laser based display systems like the Laser TV. Speckle is usually quantified by the speckle contrast. Speckle contrast reduction is essentially the creation of many independent speckle patterns, so that they average out on the retina/detector. This can be achieved by, [8]

  • Angle diversity: Illumination from different angles.
  • Polarization diversity: Use of different polarization states.
  • Wavelength diversity: Use of laser sources which differs in wavelength by a small amount.

Rotating diffusers which destroys the spatial coherence of the laser light can also be used to reduce the speckle. Moving/vibrating screens may also be solutions. The Mitsubishi Laser TV appears to use such a screen which requires special care according to their product manual.

Synthetic array heterodyne detection was developed to reduce speckle noise in coherent optical imaging and coherent DIAL LIDAR.

References

  1. ^  This article incorporates public domain material from the General Services Administration document "Federal Standard 1037C" (in support of MIL-STD-188).
  2. ^ McKechnie, T.S. 1976. Image-plane speckle in partially coherent illumination. Optical and Quantum Electronics 8:61-67.
  3. ^ Dainty C (Ed), Laser Speckle and Related Phenomena, 1984, Sprinter Verlag, ISBN 0387131698
  4. ^ M. Giglio, M. Carpineti and A. Vailati, 2000, Space intensity correlations in the near field of the scattered light: a direct measurement of the density correlation function g\left(r\right)",Phys. Rev. Lett. 85: 1416--1419
  5. ^ M. Giglio, M. Carpineti, A. Vailati and D. Brogioli, 2001,Near-field intensity correlations of scattered light, Appl. Opt. 40: 4036
  6. ^ R. Cerbino, Correlations of light in the deep Fresnel region: an extended van Cittert and Zernike theorem, Phys. Rev. A 75 5: 53815-1-4
  7. ^ D. Brogioli, A. Vailati and M. Giglio, 2002,Heterodyne near-field scattering,Appl. Phys. Lett. 81 22: 4109
  8. ^ Jahja I. Trisnadi, 2002. Speckle contrast reduction in laser projection displays. Proc. SPIE Vol. 4657, p. 131-137, Projection Displays VIII.

See also

External links

 

Toutes les traductions de speckled


Contenu de sensagent

  • définitions
  • synonymes
  • antonymes
  • encyclopédie

dictionnaire et traducteur pour sites web

Alexandria

Une fenêtre (pop-into) d'information (contenu principal de Sensagent) est invoquée un double-clic sur n'importe quel mot de votre page web. LA fenêtre fournit des explications et des traductions contextuelles, c'est-à-dire sans obliger votre visiteur à quitter votre page web !

Essayer ici, télécharger le code;

SensagentBox

Avec la boîte de recherches Sensagent, les visiteurs de votre site peuvent également accéder à une information de référence pertinente parmi plus de 5 millions de pages web indexées sur Sensagent.com. Vous pouvez Choisir la taille qui convient le mieux à votre site et adapter la charte graphique.

Solution commerce électronique

Augmenter le contenu de votre site

Ajouter de nouveaux contenus Add à votre site depuis Sensagent par XML.

Parcourir les produits et les annonces

Obtenir des informations en XML pour filtrer le meilleur contenu.

Indexer des images et définir des méta-données

Fixer la signification de chaque méta-donnée (multilingue).


Renseignements suite à un email de description de votre projet.

Jeux de lettres

Les jeux de lettre français sont :
○   Anagrammes
○   jokers, mots-croisés
○   Lettris
○   Boggle.

Lettris

Lettris est un jeu de lettres gravitationnelles proche de Tetris. Chaque lettre qui apparaît descend ; il faut placer les lettres de telle manière que des mots se forment (gauche, droit, haut et bas) et que de la place soit libérée.

boggle

Il s'agit en 3 minutes de trouver le plus grand nombre de mots possibles de trois lettres et plus dans une grille de 16 lettres. Il est aussi possible de jouer avec la grille de 25 cases. Les lettres doivent être adjacentes et les mots les plus longs sont les meilleurs. Participer au concours et enregistrer votre nom dans la liste de meilleurs joueurs ! Jouer

Dictionnaire de la langue française
Principales Références

La plupart des définitions du français sont proposées par SenseGates et comportent un approfondissement avec Littré et plusieurs auteurs techniques spécialisés.
Le dictionnaire des synonymes est surtout dérivé du dictionnaire intégral (TID).
L'encyclopédie française bénéficie de la licence Wikipedia (GNU).

Copyright

Les jeux de lettres anagramme, mot-croisé, joker, Lettris et Boggle sont proposés par Memodata.
Le service web Alexandria est motorisé par Memodata pour faciliter les recherches sur Ebay.
La SensagentBox est offerte par sensAgent.

Traduction

Changer la langue cible pour obtenir des traductions.
Astuce: parcourir les champs sémantiques du dictionnaire analogique en plusieurs langues pour mieux apprendre avec sensagent.

 

5265 visiteurs en ligne

calculé en 0,047s


Je voudrais signaler :
section :
une faute d'orthographe ou de grammaire
un contenu abusif (raciste, pornographique, diffamatoire)
une violation de copyright
une erreur
un manque
autre
merci de préciser :