Mon compte

connexion

inscription

   Publicité R▼


 » 
allemand anglais arabe bulgare chinois coréen croate danois espagnol espéranto estonien finnois français grec hébreu hindi hongrois islandais indonésien italien japonais letton lituanien malgache néerlandais norvégien persan polonais portugais roumain russe serbe slovaque slovène suédois tchèque thai turc vietnamien
allemand anglais arabe bulgare chinois coréen croate danois espagnol espéranto estonien finnois français grec hébreu hindi hongrois islandais indonésien italien japonais letton lituanien malgache néerlandais norvégien persan polonais portugais roumain russe serbe slovaque slovène suédois tchèque thai turc vietnamien

Significations et usages de множество

Définition

⇨ voir la définition de Wikipedia

   Publicité ▼

Synonymes

Locutions

Вполне упорядоченное множество • Выпуклое множество • Дизъюнктивно-универсальное множество • Замкнутое множество • Измеримое множество • Иммунное множество • Информационное множество • Канторово множество • Линейно упорядоченное множество • Множество (значения) • Множество (тип данных) • Множество приключений Винни-Пуха • Множество приключений Винни-Пуха (мультфильм) • Множество раздела • Неблуждающее множество • Непрерывное множество • Ограниченное множество • Ограниченное числовое множество • Остаточное множество • Открытое множество • Перечислимое множество • Плотное множество • Порождающее множество группы • Притягивающее множество • Регулярное множество • Случайное множество • Совершенное множество • Счётное множество • Универсальное множество • Упорядоченное множество • Уравновешенное множество

   Publicité ▼

Dictionnaire analogique

множество

много[Classe]




множество (n.)

тело[Hyper.]





множество (n.)

choix (fr)[Hyper.]



Wikipedia

Множество

Материал из Википедии — свободной энциклопедии

Перейти к: навигация, поиск

Мно́жество — один из ключевых объектов математики, в частности, теории множеств и логики.

Понятие множества обычно принимается за одно из исходных (аксиоматических) понятий, то есть не сводимое к другим понятиям, а значит и не имеющее определения. Однако, можно дать описание множества, например в формулировке Георга Кантора:

Под «множеством» мы понимаем соединение в некое целое M определённых хорошо различимых предметов m нашего созерцания или нашего мышления (которые будут называться «элементами» множества M).


— Георг Кантор, «К обоснованию учения о трансфинитных множествах»
(нем. «Beiträge zur Begründung der transfiniten Mengenlehre»)[1]

A \subset B
A \cap B
A \cup B
A \setminus B

Другая формулировка принадлежит Бертрану Расселлу: «Множество суть совокупность различных элементов, мыслимая как единое целое». Также, возможно косвенное определение через аксиомы теории множеств.

В математической логике и дискретной математике часто употребляемый синоним множества — алфавит.

Множество может быть замкнутым и незамкнутым, полным и пустым, упорядоченным и неупорядоченным, счётным и несчётным, конечным и бесконечным. Более того, как в наивной, так и в формальной теориях множеств любой объект считается множеством.

Содержание

История теории множеств

Основная статья: Теория множеств

До XIX века математиками рассматривались в основном конечные множества.

Основы теории конечных и бесконечных множеств были заложены Бернардом Больцано, который сформулировал некоторые из её принципов.

С 1872 г. по 1897 г. (главным образом в 1872—1884 гг.) Георг Кантор опубликовал ряд работ, в которых были систематически изложены основные разделы теории множеств, включая теорию точечных множеств и теорию трансфинитных чисел (кардинальных и порядковых). В этих работах он не только ввёл основные понятия теории множеств но и обогатил математику рассуждениями нового типа, которые применил для доказательства теорем теории множеств, в частности впервые к бесконечным множествам. Поэтому общепризнано, что теорию множеств создал Георг Кантор.

В частности Георг Кантор определил множество как «единое имя для совокупности всех объектов, обладающих данным свойством».Эти объекты назвал элементами множества.Множество объектов, обладающих свойством A(x), обозначил \{x\mid A(x)\}.Если некоторое множество Y=\{x\mid A(x)\}, то A(x) назвал характеристическим свойством множества Y.

Эта концепция привела к парадоксам, в частности, к парадоксу Рассела.

Так как теория множеств, фактически, используется как основание и язык всех современных математических теорий в 1908 г. теория множеств была аксиоматизирована независимо Бертраном Расселем и Эрнстом Цермело. В дальнейшем многие исследователи пересматривали и изменяли обе системы, в основном сохранив их характер. До сих пор они всё ещё известны как теория типов Рассела и теория множеств Цермело. В настоящее время, теорию множеств Кантора принято называть наивной теорией множеств, а вновь построенную аксиоматической теорией множеств.

На сегодняшний день, множество определяется как модель, удовлетворяющая аксиомам ZFC (аксиомы Цермело — Френкеля с аксиомой выбора).При таком подходе в некоторых математических теориях возникают совокупности объектов, которые не являются множествами.Такие совокупности называются классами (различных порядков).

Элемент множества

Объекты, из которых состоит множество, называют элементами множества или точками множества.Множества чаще всего обозначают большими буквами латинского алфавита, его элементы — маленькими. Если а — элемент множества А, то записываюта ∈ А (а принадлежит А). Если а не является элементом множества А, то записывают а ∉ А (а не принадлежит А).

Некоторые виды множеств и сходных объектов

Специальные множества

Сходные объекты

  • Набор (в частности, упорядоченная пара) — совокупность конечного числа именованных объектов. Записывается внутри круглых или угольных скобок, а элементы могут повторяться.
  • Мультимножество — множество с кратными элементами.
  • Пространство — множество с некоторой дополнительной структурой.
  • Вектор — элемент линейного пространства, содержащий конечное число элементов некоторого поля в качестве координат. Порядок имеет значение, элементы могут повторяться.
  • Последовательность — функция одного натурального переменного. Представляется как бесконечный набор элементов (не обязательно различных), порядок которых имеет значение.

По иерархии

Отношения между множествами

Основная статья: Подмножество

Два множества A и B могут вступать друг с другом в различные отношения.

  • A включено в B, если каждый элемент множества A принадлежит также и множеству B:
    A \subseteq B \Leftrightarrow \forall a \in A\colon a \in B
  • A включает B, если B включено в A:
    A \supseteq B \Leftrightarrow B \subseteq A
  • A равно B, если A и B включены друг в друга:
    A = B \Leftrightarrow (A \subseteq B) \land (B \subseteq A)
  • A строго включено в B, если A включено в B, но не равно ему:
    A \subset B \Leftrightarrow (A \subseteq B) \land (A \neq B)
  • A строго включает B, если B строго включено в A:
    A \supset B \Leftrightarrow B \subset A
  • A и B не пересекаются, если у них нет общих элементов:
    A~ и B~ не пересекаются \Leftrightarrow \forall a \in A\colon a \notin B
  • A и B находятся в общем положении, если существуют элемент, принадлежащий исключительно множеству A, элемент, принадлежащий исключительно множеству B, а также элемент, принадлежащий обоим множествам:
    A~ и B~ находятся в общем положении \Leftrightarrow  \exists a,b,c\colon (a \in A) \land (a \notin B) \land (b \in B) \land (b \notin A) \land (c \in A) \land (c \in B)

Операции над множествами

Основная статья: Операции над множествами

Литература

  • Столл Р. Р. Множества. Логика. Аксиоматические теории. — М.: Просвещение, 1968. — 232 с.

См. также

Примечания

  1. Русский перевод — Кантор Г. Труды по теории множеств. — М.: Наука, 1985. — С. 173..
    Немецкий оригинал — Georg Cantor Beiträge zur Begründung der transfiniten Mengenlehre (нем.) // Mathematische Annalen. — 1895. — Т. 46. — С. 481.

 

Toutes les traductions de множество


Contenu de sensagent

  • définitions
  • synonymes
  • antonymes
  • encyclopédie

dictionnaire et traducteur pour sites web

Alexandria

Une fenêtre (pop-into) d'information (contenu principal de Sensagent) est invoquée un double-clic sur n'importe quel mot de votre page web. LA fenêtre fournit des explications et des traductions contextuelles, c'est-à-dire sans obliger votre visiteur à quitter votre page web !

Essayer ici, télécharger le code;

SensagentBox

Avec la boîte de recherches Sensagent, les visiteurs de votre site peuvent également accéder à une information de référence pertinente parmi plus de 5 millions de pages web indexées sur Sensagent.com. Vous pouvez Choisir la taille qui convient le mieux à votre site et adapter la charte graphique.

Solution commerce électronique

Augmenter le contenu de votre site

Ajouter de nouveaux contenus Add à votre site depuis Sensagent par XML.

Parcourir les produits et les annonces

Obtenir des informations en XML pour filtrer le meilleur contenu.

Indexer des images et définir des méta-données

Fixer la signification de chaque méta-donnée (multilingue).


Renseignements suite à un email de description de votre projet.

Jeux de lettres

Les jeux de lettre français sont :
○   Anagrammes
○   jokers, mots-croisés
○   Lettris
○   Boggle.

Lettris

Lettris est un jeu de lettres gravitationnelles proche de Tetris. Chaque lettre qui apparaît descend ; il faut placer les lettres de telle manière que des mots se forment (gauche, droit, haut et bas) et que de la place soit libérée.

boggle

Il s'agit en 3 minutes de trouver le plus grand nombre de mots possibles de trois lettres et plus dans une grille de 16 lettres. Il est aussi possible de jouer avec la grille de 25 cases. Les lettres doivent être adjacentes et les mots les plus longs sont les meilleurs. Participer au concours et enregistrer votre nom dans la liste de meilleurs joueurs ! Jouer

Dictionnaire de la langue française
Principales Références

La plupart des définitions du français sont proposées par SenseGates et comportent un approfondissement avec Littré et plusieurs auteurs techniques spécialisés.
Le dictionnaire des synonymes est surtout dérivé du dictionnaire intégral (TID).
L'encyclopédie française bénéficie de la licence Wikipedia (GNU).

Copyright

Les jeux de lettres anagramme, mot-croisé, joker, Lettris et Boggle sont proposés par Memodata.
Le service web Alexandria est motorisé par Memodata pour faciliter les recherches sur Ebay.
La SensagentBox est offerte par sensAgent.

Traduction

Changer la langue cible pour obtenir des traductions.
Astuce: parcourir les champs sémantiques du dictionnaire analogique en plusieurs langues pour mieux apprendre avec sensagent.

 

4270 visiteurs en ligne

calculé en 0,046s


Je voudrais signaler :
section :
une faute d'orthographe ou de grammaire
un contenu abusif (raciste, pornographique, diffamatoire)
une violation de copyright
une erreur
un manque
autre
merci de préciser :